Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphocide: cytokines and the control of lymphoid homeostasis

Key Points

  • Lymphocytes are produced continually by primary organs and they proliferate steadily in peripheral lymphoid organs. However, except for during an immune response, the total number of lymphocytes remains fixed. This phenomenon is known as 'lymphoid homeostasis', which represents a balance between proliferation and cell death.

  • The main signals that regulate lymphocyte homeostasis are cytokines. Interleukin-7 (IL-7) and IL-15 are the best-characterized 'trophic' cytokines for the maintenance of several lymphocyte subsets, including naive and memory CD8+ T cells and natural killer cells.

  • There are many pathways to 'lymphocide'. The death pathway from cytokine deprivation is distinct from the pathways from death receptors such as FAS or from transforming growth factor-β or reactive oxygen species.

  • The binding of a cytokine to its receptor triggers signalling pathways that promote cell survival. One such survival pathway involves the activation of AKT by phosphatidylinositol 3-kinase, which is downregulated by phosphatase and tensin homologue (PTEN). No clear role for this pathway during lymphoid homeostasis has been established, although it can prolong the survival of cytokine-dependent cell lines after cytokine withdrawal.

  • Withdrawal of trophic cytokines can affect intracellular metabolism, by disrupting glucose metabolism and ATP synthesis, dysregulating cytosolic pH and compromising mitochondrial function. Such severe metabolic disruptions probably trigger later events in apoptosis, such as caspase activation, or might, in time, be fatal on their own.

  • Anti-apoptotic proteins (such as BCL-2) are induced by trophic cytokines. However, BCL-2 cannot account for all of the pro-survival activity of trophic cytokines because it has little effect on protection from cytokine withdrawal in lymphoid homeostasis.

  • Pro-apoptotic proteins such as BAX and BAK seem to mediate the death of memory CD8+ T cells after IL-7 or IL-15 withdrawal. Regulators of memory CD4+ T cells remain to be determined. The death proteins BIM and BAD might also contribute to the homeostatic death of lymphocytes.

Abstract

In a human, about 1011 excess peripheral lymphocytes die every day. This death process maintains a constant lymphocyte population size in the face of a continuous influx of new lymphocytes and the homeostatic proliferation of old ones. Death is triggered when a lymphocyte fails to acquire signals from survival factors, the availability of which, therefore, determines the size of the pool of lymphocytes. A lymphocyte acquires survival signals through receptors for cytokines, antigens, hormones and probably other extracellular factors. Here, we discuss current concepts of the intracellular signalling pathways for survival versus death that establish cytokine-regulated lymphocyte homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forces that maintain lymphocyte homeostasis.
Figure 2: The lymphotrophin hypothesis.
Figure 3: Death from trophic-factor loss is distinct from death through FAS.
Figure 4: Signal-transduction pathways promoting lymphocyte survival.
Figure 5: Early death-inducing events after trophic-factor withdrawal.
Figure 6: The pro-apoptotic BCL-2-family members.

Similar content being viewed by others

References

  1. Tanchot, C. et al. Lymphocyte homeostasis. Semin. Immunol. 9, 331–337 (1997).

  2. Tanchot, C., Fernandes, H. V. & Rocha, B. The organization of mature T-cell pools. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 323–328 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rocha, B., Dautigny, N. & Pereira, P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur. J. Immunol. 19, 905–911 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Kieper, W. C. & Jameson, S. C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self-peptide/MHC ligands. Proc. Natl Acad. Sci. USA 96, 13306–13311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).This article provides a thorough review of experimental data supporting the concept that there are limits that control the size of lymphocyte populations and that each lymphocyte subset occupies a unique environmental niche.

    Article  CAS  PubMed  Google Scholar 

  6. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  7. von Boehmer, H. & Hafen, K. The life span of naive αβ T cells in secondary lymphoid organs. J. Exp. Med. 177, 891–896 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T-cell lineages in interleukin-15-deficient mice. J. Exp. Med. 191, 771–780 (2000).An evaluation of IL-15-deficient mice, providing evidence that this cytokine is essential for the development of many types of immune cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).Definitive proof that IL-7 is required for the maintenance of naive T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schluns, K. S. et al. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).This study provides elegant experimental evidence that IL-7 is important for the maintenance of both naive and memory CD8+ T cells.

    Article  CAS  Google Scholar 

  12. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory-phenotype CD8+ cells, but are not required for memory-phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kieper, W. C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med. 195, 1533–1539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitazawa, H. et al. IL-7 activates α4β1 integrin in murine thymocytes. J. Immunol. 159, 2259–2264 (1997).

    CAS  PubMed  Google Scholar 

  15. Ge, Q. et al. Homeostatic T-cell proliferation in a T-cell–dendritic-cell coculture system. Proc. Natl Acad. Sci. USA 99, 2983–2988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Polic, B. et al. How αβ T cells deal with induced TCRα ablation. Proc. Natl Acad. Sci. USA 98, 8744–8749 (2001).A series of elegant experiments designed to test the requirement for TCR signalling in T cells. Inducible deletion of the TCR constant region enabled the authors to evaluate the role of the TCR in both CD4+ and CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Prlic, M. et al. Homeostatic expansion occurs independently of costimulatory signals. J. Immunol. 167, 5664–5668 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Siegel, R. M. et al. The multifaceted role of Fas signaling in immune-cell homeostasis and autoimmunity. Nature Immunol. 1, 469–474 (2000).

    Article  CAS  Google Scholar 

  21. Hildeman, D. A. et al. Molecular mechanisms of activated T-cell death in vivo. Curr. Opin. Immunol. 14, 354–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Schuster, N. & Krieglstein, K. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res. 307, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nature Rev. Immunol. 2, 46–53 (2002).

    Article  CAS  Google Scholar 

  24. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T-cell proliferation, survival and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Venkitaraman, A. R. & Cowling, R. J. Interleukin-7 induces the association of phosphatidylinositol 3-kinase with the α-chain of the interleukin-7 receptor. Eur. J. Immunol. 24, 2168–2174 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Porter, B. O., Scibelli, P. & Malek, T. R. Control of T-cell development in vivo by subdomains within the IL-7 receptor α-chain cytoplasmic tail. J. Immunol. 166, 262–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Guthridge, M. A. et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol. Cell 6, 99–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Butler, M. P. et al. Analysis of PTEN mutations and deletions in B-cell non-Hodgkin's lymphomas. Genes Chromosomes Cancer 24, 322–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki, A. et al. T-cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Fruman, D. A. et al. Impaired B-cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T-cell activation and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Exley, M. & Varticovski, L. Evidence for phosphatidylinositol 3-kinase-dependent T-cell antigen receptor (TCR) signal transduction. Mol. Immunol. 34, 221–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Eder, A. M. et al. Phosphoinositide 3-kinase regulation of T-cell-receptor-mediated interleukin-2 gene expression in normal T cells. J. Biol. Chem. 273, 28025–28031 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Kelly, E. et al. IL-2 and related cytokines can promote T-cell survival by activating AKT. J. Immunol. 168, 597–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Parsons, M. J. et al. Expression of active protein kinase B in T cells perturbs both T- and B-cell homeostasis and promotes inflammation. J. Immunol. 167, 42–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Plas, D. R. et al. Akt and Bcl-xL promote growth-factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Voll, R. E. et al. NF-κB activation by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol. 3, 221–227 (2002).

    Article  CAS  Google Scholar 

  40. Pohl, T. et al. The combined absence of NF-κB1 and c-Rel reveals that overlapping roles for these transcription factors in the B-cell lineage are restricted to the activation and function of mature cells. Proc. Natl Acad. Sci. USA 99, 4514–4519 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dexter, T. M., Heyworth, C. M. & Whetton, A. D. The role of haemopoietic cell growth factor (interleukin-3) in the development of haemopoietic cells. Ciba Found. Symp. 116, 129–147 (1985).

    CAS  PubMed  Google Scholar 

  42. Garland, J. M. & Halestrap, A. Energy metabolism during apoptosis. Bcl-2 promotes survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a form of metabolic arrest. J. Biol. Chem. 272, 4680–4688 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Summers, S. A. & Birnbaum, M. J. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem. Soc. Trans. 25, 981–988 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Plas, D. R. & Thompson, C. B. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab. 13, 75–78 (2002).

    Article  PubMed  Google Scholar 

  45. Cho, H. et al. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–38352 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Vander, H. M. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912 (2001).This article provides a thorough evaluation of the role of glucose metabolism in the survival of IL-3-dependent cells, comparing the effects of glucose withdrawal with loss of cytokine signalling in a cell line.

    Article  Google Scholar 

  47. Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Desagher, S. & Martinou, J. C. Mitochondria as the central control point of apoptosis. Trends Cell. Biol. 10, 369–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Puceat, M. pHi regulatory ion transporters: an update on structure, regulation and cell function. Cell. Mol. Life Sci. 55, 1216–1229 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Fliegel, L. et al. Regulation and characterization of the Na+/H+ exchanger. Biochem. Cell. Biol. 76, 735–741 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi, E. et al. p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J. Biol. Chem. 274, 20206–20214 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Lehoux, S. et al. 14-3-3 binding to Na+/H+ exchanger isoform-1 is associated with serum-dependent activation of Na+/H+ exchange. J. Biol. Chem. 276, 15794–15800 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Khaled, A. R. et al. Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization. Mol. Cell. Biol. 21, 7545–7557 (2001).A dissection of the intracellular signalling pathway that is activated by cytokine withdrawal that induces a rise in cytosolic pH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kummer, J. L., Rao, P. K. & Heidenreich, K. A. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 20490–20494 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Rajnavolgyi, E. et al. IL-7 withdrawal induces a stress pathway activating p38 and Jun N-terminal kinases. Cell. Signal. 14, 761–769 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Kusuhara, M. et al. p38 kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: effects on Na+/H+ exchange and ERK1/2. Circ. Res. 83, 824–831 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Khaled, A. R. et al. Interleukin-3 withdrawal induces an early increase in mitochondrial membrane potential unrelated to the Bcl-2 family. Roles of intracellular pH, ADP transport and F(0)F(1)-ATPase. J. Biol. Chem. 276, 6453–6462 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Khaled, A. R. et al. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl Acad. Sci. USA 96, 14476–14481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rebollo, A. et al. Apoptosis induced by IL-2 withdrawal is associated with an intracellular acidification. Exp. Cell Res. 218, 581–585 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Matsuyama, S. et al. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol. 2, 318–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Famulski, K. S. et al. Activation of a low pH-dependent nuclease by apoptotic agents. Cell Death Differ. 6, 281–289 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Waterhouse, N. J. et al. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153, 319–328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marzo, I. et al. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett. 427, 198–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Chao, D. T. & Korsmeyer, S. J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16, 395–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Cory, S. Regulation of lymphocyte survival by the Bcl-2 gene family. Annu. Rev. Immunol. 13, 513–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. O'Reilly, L. A., Huang, D. C. & Strasser, A. The cell-death inhibitor Bcl-2 and its homologues influence control of cell-cycle entry. EMBO J. 15, 6979–6990 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Veis, D. J. et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Matsuzaki, Y. et al. Role of bcl-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 89, 853–862 (1997).

    CAS  PubMed  Google Scholar 

  70. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-X-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Sentman, C. L. et al. Bcl-2 inhibits multiple forms of apoptosis, but not negative selection, in thymocytes. Cell 67, 879–888 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Strasser, A. et al. Lessons from Bcl-2-transgenic mice for immunology, cancer biology and cell-death research. Behring Inst. Mitt. 97, 101–117 (1996).

    CAS  Google Scholar 

  73. Ogilvy, S. et al. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor-cell survival. Proc. Natl Acad. Sci. USA 96, 14943–14948 (1999).Expression of a Bcl-2 transgene under the control of a Vav promoter enabled the authors to show the effects of overexpression of Bcl-2 on cells of the immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robles, A. I. et al. Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc. Natl Acad. Sci. USA 93, 7634–7638 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Akashi, K. et al. Bcl-2 rescues T lymphopoiesis in interleukin-7-receptor-deficient mice. Cell 89, 1033–1041 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Maraskovsky, E. et al. Bcl-2 can rescue T-lymphocyte development in interleukin-7-receptor-deficient mice but not in mutant Rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Rodewald, H. R., Waskow, C. & Haller, C. Essential requirement for c-kit and common γ-chain in thymocyte development cannot be overruled by enforced expression of Bcl-2. J. Exp. Med. 193, 1431–1437 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oltvai, Z. N., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Wolter, K. G. et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281–1292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goping, I. S. et al. Regulated targeting of BAX to mitochondria. J. Cell Biol. 143, 207–215 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knudson, C. M. et al. Bax-deficient mice with lymphoid hyperplasia and male germ-cell death. Science 270, 96–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Wen, R. et al. Jak3 selectively regulates Bax and Bcl-2 expression to promote T-cell development. Mol. Cell. Biol. 21, 678–689 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khaled, A. R. et al. Bax deficiency partially corrects interleukin-7 receptor-α deficiency. Immunity (in the press).

  84. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).A discussion of the phenotype of Bax and Bak double-deficient mice in terms of the effects of loss of these pro-apoptotic proteins on the development of a functional immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis and to preclude autoimmunity. Science 286, 1735–1738 (1999).The phenotype of Bim-deficient mice is discussed in relation to apoptosis and immune cells.

    Article  CAS  PubMed  Google Scholar 

  88. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Mok, C. L. et al. Bad can act as a key regulator of T-cell apoptosis and T-cell development. J. Exp. Med. 189, 575–586 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Downward, J. How BAD phosphorylation is good for survival. Nature Cell Biol. 1, E33–E35 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, K. et al. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1,-T2 and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol. 160, 5735–5741 (1998).

    CAS  PubMed  Google Scholar 

  93. Zheng, T. S. & Flavell, R. A. Divinations and surprises: genetic analysis of caspase function in mice. Exp. Cell. Res. 256, 67–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Doerfler, P., Forbush, K. A. & Perlmutter, R. M. Caspase enzyme activity is not essential for apoptosis during thymocyte development. J. Immunol. 164, 4071–4079 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, J. & Lenardo, M. J. Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene deficiencies. J. Cell. Sci. 113, 753–757 (2000).

    CAS  PubMed  Google Scholar 

  96. Shin, M. S. et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99, 4094–4099 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Zou, H. et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Hu, Y. et al. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18, 3586–3595 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Adrain, C. & Martin, S. J. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci. 26, 390–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Cardone, M. H. et al. Regulation of cell-death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Hara, H. et al. The apoptotic protease-activating factor-1-mediated pathway of apoptosis is dispensable for negative selection of thymocytes. J. Immunol. 168, 2288–2295 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Bidere, N. & Senik, A. Caspase-independent apoptotic pathways in T lymphocytes: a minireview. Apoptosis 6, 371–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Du, C. et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Harlin, H. et al. Characterization of XIAP-deficient mice. Mol. Cell. Biol. 21, 3604–3608 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Geiselhart, L. A. et al. IL-7 administration alters the CD4:CD8 ratio, increases T-cell numbers and increases T-cell function in the absence of activation. J. Immunol. 166, 3019–3027 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Komschlies, K. L. et al. Administration of recombinant human IL-7 to mice alters the composition of B-lineage cells and T-cell subsets, enhances T-cell function and induces regression of established metastases. J. Immunol. 152, 5776–5784 (1994).

    CAS  PubMed  Google Scholar 

  111. Mackall, C. L. et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone-marrow transplantation. Blood 97, 1491–1497 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Maki, K. et al. Interleukin-7-receptor-deficient mice lack γδ T cells. Proc. Natl Acad. Sci. USA 93, 7172–7177 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Candeias, S. et al. Defective T-cell receptor γ gene rearrangement in interleukin-7 receptor knockout mice. Immunol. Lett. 57, 9–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Surh, C. D. & Sprent, J. Regulation of naive and memory T-cell homeostasis. Microbes Infect. 4, 51–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Sprent, J. & Surh, C. D. T-cell memory. Annu. Rev. Immunol. 20, 551–579 (2002).An excellent review of recent findings on the origins and regulation of memory T cells.

    Article  CAS  PubMed  Google Scholar 

  117. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15-transgenic mice. Proc. Natl Acad. Sci. USA 97, 11445–11450 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rich, B. E. et al. Cutaneous lymphoproliferation and lymphomas in interleukin-7-transgenic mice. J. Exp. Med. 177, 305–316 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Mertsching, E., Burdet, C. & Ceredig, R. IL-7-transgenic mice: analysis of the role of IL-7 in the differentiation of thymocytes in vivo and in vitro. Int. Immunol. 7, 401–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Fehniger, T. A. et al. Fatal leukemia in interleukin-15-transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–231 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thomis, D. C. & Berg, L. J. Peripheral expression of Jak3 is required to maintain T-lymphocyte function. J. Exp. Med. 185, 197–206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dumon, S. et al. IL-3-dependent regulation of Bcl-xL gene expression by STAT5 in a bone-marrow-derived cell line. Oncogene 18, 4191–4199 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Heckman, C. A., Mehew, J. W. & Boxer, L. M. NF-κB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene 21, 3898–3908 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Cantrell, D. Protein kinase B (Akt) regulation and function in T lymphocytes. Semin. Immunol. 14, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. del-Peso, L. et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Griffiths, G. J. et al. Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20, 7668–7676 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Puthalakath, H. et al. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell. 3, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Dijkers, P. F. et al. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Sugiyama, T. et al. Activation of mitochondrial voltage-dependent anion channel by a pro-apoptotic BH3-only protein Bim. Oncogene 21, 4944–4956 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Khaled, A. R. & Durum, S. From cytosol to mitochondria: the Bax translocation story. J. Biochem. Mol. Biol. 34, 391–394 (2001).

    CAS  Google Scholar 

  132. Belaud-Rotureau, M. A. et al. Early transitory rise in intracellular pH leads to Bax conformation change during ceramide-induced apoptosis. Apoptosis 5, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Tsuruta, F., Masuyama, N. & Gotoh, Y. The phosphatidylinositol 3-kinase (PI3K)–Akt pathway suppresses Bax translocation to mitochondria. J. Biol. Chem. 277, 14040–14047 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Marani, M. et al. Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol. Cell. Biol. 22, 3577–3589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zong, W. X. et al. BH3-only proteins that bind pro-survival Bcl-2-family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol. 2, 553–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2-family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Leonard, W. J. The molecular basis of X-linked severe combined immunodeficiency: defective cytokine-receptor signaling. Annu. Rev. Med. 47, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. DiSanto, J. P. et al. Lymphoid development in mice with a targeted deletion of the interleukin-2 receptor γ-chain. Proc. Natl Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. von-Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Peschon, J. J. et al. in Cytokine Knockouts (eds Durum, S. K. & Muegge, K.) 37–52 (Humana, Totowa, New Jersey, 1998).

    Google Scholar 

  143. He, Y. W. & Malek, T. R. Interleukin-7 receptor α is essential for the development of γδ+ T cells, but not natural killer cells. J. Exp. Med. 184, 289–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Thomis, D. C. et al. Defects in B-lymphocyte maturation and T-lymphocyte activation in mice lacking Jak3. Science 270, 794–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Rolink, A. G. & Melchers, F. BAFFled B cells survive and thrive: roles of BAFF in B-cell development. Curr. Opin. Immunol. 14, 266–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Walsh, C. M. et al. A role for FADD in T-cell activation and development. Immunity 8, 439–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Kabra, N. H. et al. T-cell-specific FADD-deficient mice: FADD is required for early T-cell development. Proc. Natl Acad. Sci. USA 98, 6307–6312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15, 2203–2208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brady, H. J. et al. T cells from Baxα-transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53. gene product in. EMBO J. 15, 1221–1230 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sadlack, B. et al. Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. Eur. J. Immunol. 24, 281–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  152. Strasser, A. et al. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann. NY Acad. Sci. 917, 541–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Innes, K. M. et al. Retroviral transduction of enriched hematopoietic stem cells allows lifelong Bcl-2 expression in multiple lineages but does not perturb hematopoiesis. Exp. Hematol. 27, 75–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T-cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott K. Durum.

Related links

Related links

DATABASES

Cancer.gov

leukaemia

lymphoma

InterPro

BH1–BH3

BH4

LocusLink

4-1BB

4-1BBL

AIF

AKT

APAF1

βc

B7

BAD

BAFF

BAK

BAX

BCL-2

BCL-W

BCL-XL

BID

BIK

BIM

BLK

BOK

caspase-3

caspase-7

caspase-8

caspase-9

caspase-10

CD28

CD40

CD40L

CREB

c-Rel

ERK

FAS

FASL

FKHRL1

FLICE

FLIP

γc

GLUT1

GLUT4

GM-CSF

GSK3

HRK

IL-2

IL-2Rα

IL-3

IL-4

IL-5

IL-6

IL-7

IL-7Rα

IL-9

IL-15

IL-15Rα

IL-21

JAK3

LC8

MCL1

MEK1

NHE

OMI

p38 MAPK

p85α

p90 RSK

p110

PI3K

PTEN

SHC

STAT5

TGF-β

TNF

TRAF1

TRAF2

Vav

XIAP

OMIM

ALPS

Glossary

5,6-CARBOXYFLUORESCEIN DIACETATE SUCCINIMIDYL ESTER

(CFSE). A stable green-fluorescent dye that can be used to label populations of cells homogeneously. When a cell divides, the fluorescence intensity decreases by 50%, and this allows cells that have divided a specific number of times to be visualized by flow cytometry. This reagent can measure 7–10 cell divisions successfully.

γC CYTOKINES

Cytokines with receptors that share the common cytokine-receptor γ-chain (CD132). These cytokines are all short-chain, four-helical bundles, and they include IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.

REACTIVE OXYGEN SPECIES

(ROS). Oxygen radicals that are produced by the mitochondrial respiratory chain. In excess, they can cause intracellular and mitochondrial damage, which promotes cell death.

SMAD

(Sma and Mad proteins in Caenorhabditis elegans and Drosophila, respectively). SMAD proteins are downstream effectors of the TGF-β signalling cascade. These proteins transduce signals from the cell membrane to the nucleus, thereby initiating the transcription of target genes.

ACTIVATION-INDUCED CELL DEATH

(AICD). A process by which activated T cells undergo cell death through engagement of death receptors such as FAS or the TNF receptor, or the production of reactive oxygen species.

LYMPHOPAENIA

A deficiency of lymphocytes in the blood circulation.

14-3-3

A family of conserved proteins present in all eukaryotic organisms that are involved in such diverse cellular processes as apoptosis and stress, as well as intracellular signalling and cell-cycle regulation. 14-3-3 proteins function as adaptors in protein interactions and can regulate protein localization and enzymatic activity. Approximately 100 binding partners for the 14-3-3 proteins have been reported.

PHOSPHATASE AND TENSIN HOMOLOGUE

(PTEN). A phosphatidylinositol 3-phosphatase and tumour suppressor that dephosphorylates lipid phosphatidylinositol-3,4,5-triphosphates and antagonizes the activity of phosphatidylinositol 3-kinase.

PRE-T-CELL RECEPTOR

(pre-TCR). A receptor that is expressed on pre-T cells formed by the TCR β-chain and the invariant pre-Tα protein. This receptor complex includes CD3 proteins and transduces signals that allow further T-cell development.

INHIBITORS OF APOPTOSIS

(IAPs). A family of proteins that inhibit cell death by interfering with caspase activity. IAPs, such as XIAP and survivin, target distinct caspases. In addition, IAPs have other functions in cell-cycle regulation, protein degradation and signal transduction.

GLUCOSE TRANSPORTER PROTEINS

(GLUT). A family of GLUT proteins facilitate the transport of glucose across membranes, each member having a distinct tissue distribution and biochemical activity.

SODIUM/HYDROGEN EXCHANGER

(NHE). The NHE-family proteins are membrane-spanning electroneutral ion exchangers. The family includes six isoforms (NHE1–NHE6). Diverse effects of NHE1 include homeostasis of the internal pH, cell-volume regulation and interaction with the actin cortical network, which regulates adhesion, cell-shape determination, migration and proliferation.

MITOCHONDRIAL MEMBRANE POTENTIAL

The voltage difference across the mitochondrial inner membrane, with the outside being positive and the inside being negative, that generates the proton-motive force, driving the synthesis of ATP by the process of oxidative phosphorylation.

LYMPHOCYTOSIS

An increase in the number of lymphocytes in the blood, which is usually associated with chronic infections or inflammation.

APOPTOSOME

An apoptotic protein complex formed from the association of APAF1, cytochrome c and dATP with pro-caspase-9. Complex formation leads to the cleavage and activation of caspase-9, which activates caspase-3 and other effector caspases, leading to cell death.

APOPTOSIS-INDUCING FACTOR

(AIF). A protein found in the mitochondrial intermembrane. When released from mitochondria after loss of the mitochondrial outer membrane, AIF travels to the nucleus and activates a nuclease that degrades DNA.

OMI

A mitochondrial serine protease. When released from the mitochondrial intermembrane space, OMI enters the cytosol, where it enhances caspase-dependent apoptosis by blocking inhibitors. Caspase-independent cell death might result from its serine-protease activity.

SMAC/DIABLO

(second mitochondrial apoptosis-activating factor). Another protein found in the mitochondrial intermembrane. When released, SMAC binds IAPs, inhibiting their pro-survival functions. Complexes of SMAC and IAPs have decreased anti-apoptotic activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaled, A., Durum, S. Lymphocide: cytokines and the control of lymphoid homeostasis. Nat Rev Immunol 2, 817–830 (2002). https://doi.org/10.1038/nri931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing