Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of mast-cell and basophil function and survival by IgE

Key Points

  • Mast cells and basophils are important sources of effector function in IgE-associated immune responses and are also potential sources of immunoregulatory function.

  • The best-understood mechanism for eliciting IgE-dependent effector function in mast cells and basophils is aggregation of FcɛRI, for example, by the crosslinking of FcɛRI-bound IgE with multivalent antigen.

  • Protein-tyrosine kinase (PTK)-mediated activation mechanisms are triggered by FcɛRI aggregation. Several adaptor proteins and enzymes are involved in the activation of crucial signalling pathways, which lead to degranulation, lipid-mediator release, and cytokine and chemokine production and secretion.

  • Inhibitory receptors, such as FcγRIIB, gp49B1, paired immunoglobulin-like receptor B (PIRB) and mast-cell function-associated antigen (MAFA) inhibit cell activation by using their immunoreceptor tyrosine-based inhibitory motifs (ITIMs) to recruit the SH2-domain-containing protein tyrosine phosphatases SHP1 and SHP2, or SH2-domain-containing inositol polyphosphate 5′ phosphatase 1 (SHIP1) and SHIP2.

  • Binding of monomeric IgE to FcɛRI enhances the surface expression of FcɛRI, which is associated with increased sensitivity to antigen challenge and the increased production of mediators and cytokines after FcɛRI aggregation.

  • Binding of monomeric IgE to FcɛRI can also enhance mast-cell survival, although the mechanism(s) that underlies this effect is not fully understood.

  • Mast-cell development and growth are crucially regulated by the survival and developmental factor c-KIT ligand (stem-cell factor, SCF). However, many other cytokines can positively (for example, IL-3, IL-4 and IL-6) or negatively (for example, transforming growth factor-β) affect the survival and/or proliferation of various mast-cell populations.

  • IL-3 is an important basophil survival and developmental factor, and it promotes basophilia in mice in vivo. However, IL-3 is not required for baseline levels of basophil production in mice.

  • Depending on the circumstances, FcɛRI aggregation can enhance mast-cell survival and/or proliferation, promote apoptosis or have neutral effects on survival.

  • Life-versus-death decisions in mast cells are influenced by many endogenous and exogenous factors. Endogenous factors include mast-cell-derived cytokines, cytokine receptors, adhesion molecules, death receptors, caspases, BCL-2-family proteins, intracellular signalling molecules (lipids and proteins) and transcription factors.

  • The effects of IgE on FcɛRI surface expression and survival of mast cells and basophils are additional potential targets for anti-IgE therapy of allergic diseases.

Abstract

Mast cells and basophils are important effector cells in T helper 2 (TH2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor FcɛRI with multivalent antigen results in the aggregation of FcɛRI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of FcɛRI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to FcɛRI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FcɛRI-mediated activation pathways.
Figure 2: A representative inhibitory pathway in mast cells.
Figure 3: A positive-feedback model for IgE production and IgE-dependent mast-cell activation, survival and/or proliferation.

Similar content being viewed by others

References

  1. Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Metcalfe, D. D., Baram, D. & Mekori, Y. A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Galli, S. J. & Lantz, C. S. in Fundamental Immunology (ed. Paul, W. E.) 1137–1184 (Lippincott–Raven, Philadelphia, 1999).

    Google Scholar 

  4. Galli, S. J., Zsebo, K. M. & Geissler, E. N. The kit ligand, stem cell factor. Adv. Immunol. 55, 1–96 (1994).

    CAS  PubMed  Google Scholar 

  5. Galli, S. J. Mast cells and basophils. Curr. Opin. Hematol. 7, 32–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Galli, S. J., Metcalfe, D. D. & Dvorak, A. M. in Williams Hematology (eds. Beutler, E., Lichtman, M. A., Coller, B. S., Kipps, T. J. & Seligsohn, U.) 801–815 (McGraw–Hill, New York, 2001).

    Google Scholar 

  7. Williams, C. M. M. & Galli, S. J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847–859 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Sayama, K. et al. Transcriptional response of human mast cells stimulated via the FcɛRI and identification of mast cells as a source of IL-11. BMC Immunol. 3, 5 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Metzger, H. The receptor with high affinity for IgE. Immunol. Rev. 125, 37–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Turner, H. & Kinet, J.-P. Signalling through the high-affinity IgE receptor FcɛRI. Nature 402, B24–B30 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wedemeyer, J., Tsai, M. & Galli, S. J. Roles of mast cells and basophils in innate and acquired immunity. Curr. Opin. Immunol. 12, 624–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Galli, S. J. Complexity and redundancy in the pathogenesis of asthma: reassessing the roles of mast cells and T cells. J. Exp. Med. 186, 343–347 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams, C. M. M. & Galli, S. J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, T. et al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol. 164, 3855–3861 (2000).References 13 and 14 identify crucial roles for mast cells in the airway hyperresponsiveness (references 13 and 14 ) and airway inflammation (reference 13 ) that is induced by relatively 'weak' immunological stimulation.

    Article  CAS  PubMed  Google Scholar 

  15. Gauchat, J. F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Mecheri, S. & David, B. Unravelling the mast-cell dilemma: culprit or victim of its generosity? Immunol. Today 18, 212–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ishizaka, K. & Ishizaka, T. Identification of γE-antibodies as a carrier of reaginic activity. J. Immunol. 99, 1187–1198 (1967).

    CAS  PubMed  Google Scholar 

  19. Johansson, S. G. O. & Bennich, H. in Gammaglobulins. Structure and Control of Biosynthesis (ed. Kilander, J.) 193–197 (Almqvist & Wiksell, Stockholm, 1967).

    Google Scholar 

  20. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Garman, S. C., Kinet, J.-P. & Jardetzky, T. S. Crystal structure of the human high-affinity IgE receptor. Cell 95, 951–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J.-P. & Jardetzky, T. S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcɛRIα. Nature 406, 259–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hutchcroft, J. E., Geahlen, R. L., Deanin, G. G. & Oliver, J. M. FcɛRI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc. Natl Acad. Sci. USA 89, 9107–9111 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eiseman, E. & Bolen, J. B. Engagement of the high-affinity IgE receptor activates Src protein-related tyrosine kinases. Nature 355, 78–80 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Kawakami, Y. et al. Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon FcɛRI cross-linking. Mol. Cell. Biol. 14, 5108–5113 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jouvin, M. H. et al. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high-affinity immunoglobulin E receptor. J. Biol. Chem. 269, 5918–5925 (1994).

    CAS  PubMed  Google Scholar 

  27. Cambier, J. C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155, 3281–3285 (1995).

    CAS  PubMed  Google Scholar 

  28. El-Hillal, O., Kurosaki, T., Yamamura, H., Kinet, J.-P. & Scharenberg, A. M. Syk kinase activation by a Src kinase-initiated activation loop phosphorylation chain reaction. Proc. Natl Acad. Sci. USA 94, 1919–1924 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimura, T., Sakamoto, H., Appella, E. & Siraganian, R. P. Conformational changes induced in the protein tyrosine kinase p72syk by tyrosine phosphorylation or by binding of phosphorylated immunoreceptor tyrosine-based activation motif peptides. Mol. Cell. Biol. 16, 1471–1478 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holowka, D., Sheets, E. D. & Baird, B. Interactions between FcɛRI and lipid raft components are regulated by the actin cytoskeleton. J. Cell. Sci. 113, 1009–1019 (2000).

    CAS  PubMed  Google Scholar 

  31. Field, K. A., Holowka, D. & Baird, B. Structural aspects of the association of FcɛRI with detergent-resistant membranes. J. Biol. Chem. 274, 1753–1758 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Sheets, E. D., Holowka, D. & Baird, B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcɛRI and their association with detergent-resistant membranes. J. Cell. Biol. 145, 877–887 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Field, K. A., Holowka, D. & Baird, B. Compartmentalized activation of the high-affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272, 4276–4280 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Field, K. A., Holowka, D. & Baird, B. FcɛRI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA 92, 9201–9205 (1995).This study, and other papers by this group, initiated the current series of studies on the role of lipid rafts in mast-cell activation and other examples of immunoreceptor-triggered cell activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holowka, D. & Baird, B. FcɛRI as a paradigm for a lipid raft-dependent receptor in hematopoietic cells. Semin. Immunol. 13, 99–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Wilson, B. S., Pfeiffer, J. R., Surviladze, Z., Gaudet, E. A. & Oliver, J. M. High-resolution mapping of mast-cell membranes reveals primary and secondary domains of FcɛRI and LAT. J. Cell. Biol. 154, 645–658 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FcɛRI signaling from the inside of the mast-cell membrane. J. Cell. Biol. 149, 1131–1142 (2000).This paper analyses the localization of FcɛRI and signalling molecules on the mast-cell plasma membrane using electron microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Daeron, M. Fc receptor biology. Annu. Rev. Immunol. 15, 203–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Ott, V. L. & Cambier, J. C. Activating and inhibitory signaling in mast cells: new opportunities for therapeutic intervention? J. Allergy Clin. Immunol. 106, 429–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Daeron, M. Building up the family of ITIM-bearing negative coreceptors. Immunol. Lett. 54, 73–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Malbec, O. et al. Fcɛ receptor I-associated Lyn-dependent phosphorylation of Fcγ receptor IIB during negative regulation of mast-cell activation. J. Immunol. 160, 1647–1658 (1998).

    CAS  PubMed  Google Scholar 

  43. Tridandapani, S. et al. Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fcγ immunoreceptor tyrosine-based inhibition motif peptide motif. Mol. Cell. Biol. 17, 4305–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tamir, I. et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12, 347–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Huber, M. et al. The Src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast-cell degranulation. Proc. Natl Acad. Sci. USA 95, 11330–11335 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katz, H. R. et al. Mouse mast-cell gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs and suppresses mast-cell activation when coligated with the high-affinity Fc receptor for IgE. Proc. Natl Acad. Sci. USA 93, 10809–10814 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu-Kuo, J. M., Joyal, D. M., Austen, K. F. & Katz, H. R. gp49B1 inhibits IgE-initiated mast-cell activation through both immunoreceptor tyrosine-based inhibitory motifs, recruitment of Src homology 2 domain-containing phosphatase-1 and suppression of early and late calcium mobilization. J. Biol. Chem. 274, 5791–5796 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Castells, M. C. et al. gp49B1-α(v)β3 interaction inhibits antigen-induced mast-cell activation. Nature Immunol. 2, 436–442 (2001).

    Article  CAS  Google Scholar 

  49. Daheshia, M., Friend, D. S., Grusby, M. J., Austen, K. F. & Katz, H. R. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J. Exp. Med. 194, 227–234 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maeda, A., Kurosaki, M., Ono, M., Takai, T. & Kurosaki, T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J. Exp. Med. 187, 1355–1360 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamashita, Y., Ono, M. & Takai, T. Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J. Immunol. 161, 4042–4047 (1998).

    CAS  PubMed  Google Scholar 

  52. Blery, M. et al. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc. Natl Acad. Sci. USA 95, 2446–2451 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maeda, A. et al. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1. Oncogene 18, 2291–2297 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Uehara, T. et al. Inhibition of IgE-mediated mast-cell activation by the paired Ig-like receptor PIR-B. J. Clin. Invest. 108, 1041–1050 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guthmann, M. D., Tal, M. & Pecht, I. A secretion-inhibitory signal-transduction molecule on mast cells is another C-type lectin. Proc. Natl Acad. Sci. USA 92, 9397–9401 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ortega, E., Schneider, H. & Pecht, I. Possible interactions between the Fcɛ receptor and a novel mast-cell function-associated antigen. Int. Immunol. 3, 333–342 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Song, J., Hagen, G. M., Roess, D. A., Pecht, I. & Barisas, B. G. The mast-cell function-associated antigen and its interactions with the type I Fcɛ receptor. Biochemistry 41, 881–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Jurgens, L., Arndt-Jovin, D., Pecht, I. & Jovin, T. M. Proximity relationships between the type I receptor for Fcɛ (FcɛRI) and the mast-cell function-associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy. Eur. J. Immunol. 26, 84–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, R., Abramson, J., Fridkin, M. & Pecht, I. SH2 domain-containing inositol polyphosphate 5′-phosphatase is the main mediator of the inhibitory action of the mast-cell function-associated antigen. J. Immunol. 167, 6394–6402 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, R. & Pecht, I. The protein tyrosine kinase Syk activity is reduced by clustering the mast-cell function-associated antigen. Eur. J. Immunol. 31, 1571–1581 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Conroy, M. C., Adkinson, N. F. Jr & Lichtenstein, L. M. Measurement of IgE on human basophils: relation to serum IgE and anti-IgE-induced histamine release. J. Immunol. 118, 1317–1321 (1977).

    CAS  PubMed  Google Scholar 

  62. Stallman, P. J., Aalberse, R. C., Bruhl, P. C. & van Elven, E. H. Experiments on the passive sensitization of human basophils, using quantitative immunofluorescence microscopy. Int. Arch. Allergy Appl. Immunol. 54, 364–373 (1977).

    Article  CAS  PubMed  Google Scholar 

  63. Malveaux, F. J., Conroy, M. C., Adkinson, N. F. Jr & Lichtenstein, L. M. IgE receptors on human basophils. Relationship to serum IgE concentration. J. Clin. Invest. 62, 176–181 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Furuichi, K., Rivera, J. & Isersky, C. The receptor for immunoglobulin E on rat basophilic leukemia cells: effect of ligand binding on receptor expression. Proc. Natl Acad. Sci. USA 82, 1522–1525 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Quarto, R., Kinet, J.-P. & Metzger, H. Coordinate synthesis and degradation of the α-, β- and γ-subunits of the receptor for immunoglobulin E. Mol. Immunol. 22, 1045–1051 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Hsu, C. & MacGlashan, D. Jr. IgE antibody up-regulates high-affinity IgE binding on murine bone-marrow-derived mast cells. Immunol. Lett. 52, 129–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Yamaguchi, M. et al. IgE enhances mouse mast cell FcɛRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J. Exp. Med. 185, 663–672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yano, K. et al. Production of macrophage inflammatory protein-1α by human mast cells: increased anti-IgE-dependent secretion after IgE-dependent enhancement of mast-cell IgE-binding ability. Lab. Invest. 77, 185–193 (1997).References 66–68 describe IgE-dependent enhancement of FcɛRI cell-surface expression and its functional relevance to antigen-dependent mast-cell activation. An IgE-initiated positive-feedback mechanism ( Fig. 3 ) is also proposed (references 67 and 68).

    CAS  PubMed  Google Scholar 

  69. Lantz, C. S. et al. IgE regulates mouse basophil FcɛRI expression in vivo. J. Immunol. 158, 2517–2521 (1997).

    CAS  PubMed  Google Scholar 

  70. Yamaguchi, M. et al. IgE enhances Fcɛ receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord-blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fcɛ receptor I expression and mediator release. J. Immunol. 162, 5455–5465 (1999).

    CAS  PubMed  Google Scholar 

  71. Toru, H., Pawankar, R., Ra, C., Yata, J. & Nakahata, T. Human mast cells produce IL-13 by high-affinity IgE receptor cross-linking: enhanced IL-13 production by IL-4-primed human mast cells. J. Allergy Clin. Immunol. 102, 491–502 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Borkowski, T. A., Jouvin, M. H., Lin, S. Y. & Kinet, J.-P. Minimal requirements for IgE-mediated regulation of surface FcɛRI. J. Immunol. 167, 1290–1296 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Kubo, S. et al. Drastic up-regulation of FcɛRI on mast cells is induced by IgE binding through stabilization and accumulation of FcɛRI on the cell surface. J. Immunol. 167, 3427–3434 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Asai, K. et al. Regulation of mast-cell survival by IgE. Immunity 14, 791–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801–811 (2001).References 74 and 75 describe the ability of monomeric IgE to enhance mast-cell survival.

    Article  CAS  PubMed  Google Scholar 

  76. Huang, C., Sali, A. & Stevens, R. L. Regulation and function of mast-cell proteases in inflammation. J. Clin. Immunol. 18, 169–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Rodewald, H.-R., Dessing, M., Dvorak, A. M. & Galli, S. J. Identification of a committed precursor for the mast-cell lineage. Science 271, 818–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Lantz, C. S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Li, L., Zhang, X.-T. & Krilis, S. A. in Signal Transduction in Mast Cells and Basophils (eds Razin, E. & Rivera, J.) 54–65 (Springer–Verlag, New York, 1998).

    Google Scholar 

  80. Mekori, Y. A., Hartmann, K. & Metcalfe, D. D. in Signal transduction in Mast Cells and Basophils (eds Razin, E. & Rivera, J.) 85–94 (Springer–Verlag, New York, 1998).

    Google Scholar 

  81. Mekori, Y. A., Oh, C. K. & Metcalfe, D. D. IL-3-dependent murine mast cells undergo apoptosis on removal of IL-3. Prevention of apoptosis by c-kit ligand. J. Immunol. 151, 3775–3784 (1993).

    CAS  PubMed  Google Scholar 

  82. Yee, N. S., Paek, I. & Besmer, P. Role of kit-ligand in proliferation and suppression of apoptosis in mast cells: basis for radiosensitivity of white spotting and steel mutant mice. J. Exp. Med. 179, 1777–1787 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Iemura, A., Tsai, M., Ando, A., Wershil, B. K. & Galli, S. J. The c-kit ligand, stem-cell factor, promotes mast-cell survival by suppressing apoptosis. Am. J. Pathol. 144, 321–328 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Plaut, M. et al. Mast-cell lines produce lymphokines in response to cross-linkage of FcɛRI or to calcium ionophores. Nature 339, 64–67 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Tsai, M., Tam, S. Y. & Galli, S. J. Distinct patterns of early response gene expression and proliferation in mouse mast cells stimulated by stem-cell factor, interleukin-3, or IgE and antigen. Eur. J. Immunol. 23, 867–872 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Tsai, M., Chen, R. H., Tam, S. Y., Blenis, J. & Galli, S. J. Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or FcɛRI: rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells. Eur. J. Immunol. 23, 3286–3291 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Yoshikawa, H., Nakajima, Y. & Tasaka, K. Glucocorticoid suppresses autocrine survival of mast cells by inhibiting IL-4 production and ICAM-1 expression. J. Immunol. 162, 6162–6170 (1999).

    CAS  PubMed  Google Scholar 

  88. Xiang, Z. et al. Essential role of the prosurvival bcl-2 homologue A1 in mast-cell survival after allergic activation. J. Exp. Med. 194, 1561–1569 (2001).References 87 and 88 identify the ability of FcɛRI aggregation to enhance mast-cell survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yeatman, C. F. 2nd et al. Combined stimulation with the T-helper cell type-2 cytokines interleukin (IL)-4 and IL-10 induces mouse mast-cell apoptosis. J. Exp. Med. 192, 1093–1103 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Andres, B. et al. FcγRII (CD32) is linked to apoptotic pathways in murine granulocyte precursors and mature eosinophils. Blood 90, 1267–1274 (1997).

    CAS  PubMed  Google Scholar 

  91. Kim, J. T., Schimming, A. W. & Kita, H. Ligation of FcγRII (CD32) pivotally regulates survival of human eosinophils. J. Immunol. 162, 4253–4259 (1999).

    CAS  PubMed  Google Scholar 

  92. Gamberale, R., Giordano, M., Trevani, A. S., Andonegui, G. & Geffner, J. R. Modulation of human neutrophil apoptosis by immune complexes. J. Immunol. 161, 3666–3674 (1998).

    CAS  PubMed  Google Scholar 

  93. Azzoni, L., Anegon, I., Calabretta, B. & Perussia, B. Ligand binding to FcγR induces c-myc-dependent apoptosis in IL-2-stimulated NK cells. J. Immunol. 154, 491–499 (1995).

    CAS  PubMed  Google Scholar 

  94. Ortaldo, J. R., Mason, A. T. & O'Shea, J. J. Receptor-induced death in human natural killer cells: involvement of CD16. J. Exp. Med. 181, 339–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Thompson, H. L., Burbelo, P. D., Segui-Real, B., Yamada, Y. & Metcalfe, D. D. Laminin promotes mast-cell attachment. J. Immunol. 143, 2323–2327 (1989).

    CAS  PubMed  Google Scholar 

  96. Dastych, J., Costa, J. J., Thompson, H. L. & Metcalfe, D. D. Mast-cell adhesion to fibronectin. Immunology 73, 478–484 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bianchine, P. J., Burd, P. R. & Metcalfe, D. D. IL-3-dependent mast cells attach to plate-bound vitronectin. Demonstration of augmented proliferation in response to signals transduced via cell-surface vitronectin receptors. J. Immunol. 149, 3665–3671 (1992).

    CAS  PubMed  Google Scholar 

  98. Adachi, S. et al. Necessity of extracellular domain of W (c-kit) receptors for attachment of murine cultured mast cells to fibroblasts. Blood 79, 650–656 (1992).

    CAS  PubMed  Google Scholar 

  99. Adachi, S. et al. Inhibition of attachment between cultured mast cells and fibroblasts by phorbol 12-myristate 13-acetate and stem-cell factor. Exp. Hematol. 23, 58–65 (1995).

    CAS  PubMed  Google Scholar 

  100. Kitamura, Y. & Go, S. Decreased production of mast cells in Sl/Sld anemic mice. Blood 53, 492–497 (1979).

    CAS  PubMed  Google Scholar 

  101. Serve, H. et al. Differential roles of PI3-kinase and Kit tyrosine 821 in Kit receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J. 14, 473–483 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kinashi, T., Escobedo, J. A., Williams, L. T., Takatsu, K. & Springer, T. A. Receptor tyrosine kinase stimulates cell-matrix adhesion by phosphatidylinositol 3 kinase and phospholipase Cγ1 pathways. Blood 86, 2086–2090 (1995).

    CAS  PubMed  Google Scholar 

  103. Galli, S. J., Gordon, J. R. & Wershil, B. K. Cytokine production by mast cells and basophils. Curr. Opin. Immunol. 3, 865–872 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Galli, S. J. & Costa, J. J. Mast-cell–leukocyte cytokine cascades in allergic inflammation. Allergy 50, 851–862 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Wagelie-Steffen, A. L., Hartmann, K., Vliagoftis, H. & Metcalfe, D. D. Fas ligand (FasL, CD95L, APO-1L) expression in murine mast cells. Immunology 94, 569–574 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hartmann, K., Wagelie-Steffen, A. L., von Stebut, E. & Metcalfe, D. D. Fas (CD95, APO-1) antigen expression and function in murine mast cells. J. Immunol. 159, 4006–4014 (1997).

    CAS  PubMed  Google Scholar 

  107. Piliponsky, A. M. & Levi-Schaffer, F. Regulation of apoptosis in mast cells. Apoptosis 5, 435–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Cardone, M. H. et al. Regulation of cell-death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. del Peso, L., Gonzalez, V. M., Hernandez, R., Barr, F. G. & Nunez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3–FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 18, 7328–7333 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Tang, E. D., Nunez, G., Barr, F. G. & Guan, K. L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 274, 16741–16746 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Q. et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid-cell survival. Genes Dev. 13, 786–791 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kawakami, Y. et al. Regulation of protein kinase CβI by two protein-tyrosine kinases, Btk and Syk. Proc. Natl Acad. Sci. USA 97, 7423–7428 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kawakami, Y. et al. Bruton's tyrosine kinase regulates apoptosis and JNK/SAPK kinase activity. Proc. Natl Acad. Sci. USA 94, 3938–3942 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kawakami, Y., Hartman, S. E., Holland, P. M., Cooper, J. A. & Kawakami, T. Multiple signaling pathways for the activation of JNK in mast cells: involvement of Bruton's tyrosine kinase, protein kinase C and JNK kinases, SEK1 and MKK7. J. Immunol. 161, 1795–1802 (1998).

    CAS  PubMed  Google Scholar 

  118. Petro, J. B., Rahman, S. M., Ballard, D. W. & Khan, W. N. Bruton's tyrosine kinase is required for activation of IκB kinase and nuclear factor-κB in response to B-cell receptor engagement. J. Exp. Med. 191, 1745–1754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bajpai, U. D., Zhang, K., Teutsch, M., Sen, R. & Wortis, H. H. Bruton's tyrosine kinase links the B-cell receptor to nuclear factor-κB activation. J. Exp. Med. 191, 1735–1744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Petro, J. B. & Khan, W. N. Phospholipase Cγ2 couples Bruton's tyrosine kinase to the NF-κB signaling pathway in B lymphocytes. J. Biol. Chem. 276, 1715–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, F. C. et al. Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 12, 557–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Lu-Kuo, J. M., Fruman, D. A., Joyal, D. M., Cantley, L. C. & Katz, H. R. Impaired kit- but not FcɛRI-initiated mast-cell activation in the absence of phosphoinositide 3-kinase p85α gene products. J. Biol. Chem. 275, 6022–6029 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Crabtree, G. R. Calcium, calcineurin and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Sperr, W. R. et al. Effects of cyclosporin A and FK-506 on stem cell factor-induced histamine secretion and growth of human mast cells. J. Allergy Clin. Immunol. 98, 389–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Maurer, M. et al. A role for Bax in the regulation of apoptosis in mouse mast cells. J. Invest. Dermatol. 114, 1205–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Mekori, Y. A. et al. Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit. Immunology 90, 518–525 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. MacGlashan, D. W. Jr et al. Down-regulation of FcɛRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J. Immunol. 158, 1438–1445 (1997).

    CAS  PubMed  Google Scholar 

  128. Gilchrest, H. et al. Human cord-blood-derived mast cells (CBMCs) secrete proinflammatory chemokines and cytokines in response to activation of FcɛRI by IgE/anti-IgE and also by IgE alone. FASEB J. 16, A1241 (2002).

    Google Scholar 

  129. Oettgen, H. C. et al. Active anaphylaxis in IgE-deficient mice. Nature 370, 367–370 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Matsuoka, K. et al. Establishment of antigen-specific IgE-transgenic mice to study pathological and immunobiological roles of IgE in vivo. Int. Immunol. 11, 987–994 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Dvorak, A. M., Monahan, R. A., Osage, J. E. & Dickersin, G. R. Crohn's disease: transmission electron microscopic studies. II. Immunologic inflammatory response. Alterations of mast cells, basophils, eosinophils and the microvasculature. Hum. Pathol. 11, 606–619 (1980).

    Article  CAS  PubMed  Google Scholar 

  132. Weller, P. F., Tsai, M. & Galli, S. J. in Blood: Principles & Practice of Hematology 2nd edn. (eds Handin, R. I., Lux, S. E. & Stosel, T. P.) (JB Lippincott Co., Philadelphia) (in the press).

  133. Li, L. et al. Identification of basophilic cells that express mast-cell granule proteases in the peripheral blood of asthma, allergy and drug-reactive patients. J. Immunol. 161, 5079–5086 (1998).

    CAS  PubMed  Google Scholar 

  134. Kinet, J. P. The high-affinity IgE receptor (FcɛRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Gu, H. et al. Essential role for Gab2 in the allergic response. Nature 412, 186–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Lemmon, M. A. & Ferguson, K. M. Pleckstrin-homology domains. Curr. Top. Microbiol. Immunol. 228, 39–74 (1998).

    CAS  PubMed  Google Scholar 

  137. Hemmings, B. A. Akt signaling: linking membrane events to life and death decisions. Science 275, 628–630 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell. Biol. 10, 262–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Rawlings, D. J. et al. Activation of BTK by a phosphorylation mechanism initiated by SRC-family kinases. Science 271, 822–825 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Park, H. et al. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4, 515–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Kurosaki, T. & Kurosaki, M. Transphosphorylation of Bruton's tyrosine kinase on tyrosine 551 is critical for B-cell antigen receptor function. J. Biol. Chem. 272, 15595–15598 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Scharenberg, A. M. et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17, 1961–1972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17, 1973–1985 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T-cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Saitoh, S. et al. LAT is essential for FcɛRI-mediated mast-cell activation. Immunity 12, 525–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Tuosto, L., Michel, F. & Acuto, O. p95vav associates with tyrosine-phosphorylated SLP-76 in antigen-stimulated T cells. J. Exp. Med. 184, 1161–1166 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, S. K., Fang, N., Koretzky, G. A. & McGlade, C. J. The hematopoietic-specific adaptor protein GADS functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Kawakami and Galli laboratories for their valuable contributions to some of the studies reviewed here. We also thank B. Goldstein, D. MacGlashan Jr, H. Metzger, J. Rivera, S.-Y. Tam and M. Tsai for their critical review of the manuscript, A. M. Dvorak for the electron micrograph in Box 1, and J.-P. Kinet for the figure in Box 2. We apologize to those authors whose studies are not cited because of space limitations. This work was supported, in part, by grants from the National Institutes of Health to T.K. and S.J.G. This is publication number 492 from the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Galli.

Related links

Related links

DATABASES

InterPro

ITAM

PH

SH2

LocusLink

A1

AFX

AKT

BAD

Bax

Bcl-2

BCL-XL

BTK

caspase-9

CD23

c-Fos

c-Jun

c-Kit

DOK1

ERK1

ERK2

FAS

FASL

FcɛRI

FcγRII

FcγRIIB

FcγRIII

fibronectin

FKHR

FKHRL1

GAB2

galectin-3

GM-CSF

GRB2

ICAM1

IκB

IL-2

IL-3

IL-4

IL-5

IL-6

IL-9

IL-10

IL-13

interferon-γ

JNK1

JNK2

JunB

laminin

LAT

LFA1

LYN

MAFA

MIP1α

NFAT

NF-κB

NGF

PDGF

PI3K

PIRB

PLCγ

PTEN

p70 S6 kinases

p90RSK

RAC2

SCF

SHC

SHIP

SHP1

SHP2

SLP76

SOS

SRC

Stat5

SYK

α-subunit

β-subunit

γ-subunit

TEC

TGF-β1

THY1

TNF

TRAIL

VAV

vitronectin

OMIM

asthma

FURTHER INFORMATION

The Fourth International Workshop on Signal Transduction in the Activation and Development of Mast cells and Basophils, 2001

Glossary

ATOPY

A word meaning 'strange disease' that was coined to describe the familial syndrome of asthma and hay fever. Atopic subjects are predisposed to develop strong IgE responses to common environmental antigens.

T HELPER 2 CELL

(TH2 cell). A type of T cell that, through the production of IL-4, IL-13 and other cytokines, can help B cells to produce IgE and other antibodies and, through the secretion of IL-5, IL-3 and others, can promote increased numbers of eosinophilic granulocytes (eosinophils), basophils and mast cells.

ITAM

(Immunoreceptor tyrosine-based activation motif). A sequence — YxxL/I(x)6–8YxxL/I — that is present in the cytoplasmic domains of various activating receptors on immune cells, including FcɛRI, that has a crucial role in recruiting SRC- and SYK-family protein-tyrosine kinases.

LIPID RAFTS

Areas of the plasma membrane that are rich in cholesterol, glycosphingolipids, several signalling proteins (such as SRC kinases, RAS, LAT, CBP/PAG) and glycosylphosphatidylinositol-anchored proteins. Also known as glycolipid-enriched microdomains (GEMs) and detergent-insoluble glycolipid-enriched membranes (DIGs).

OSMIOPHILIC PATCHES

A form of plasma-membrane heterogeneity that is detected as 'electron-dense' (osmiophilic) areas, which, in mast cells, can be rich in FcɛRI and some signalling molecules.

ITIM

(Immunoreceptor tyrosine-based inhibitory motif). The cytoplasmic sequence — I/VxYxxL —that is present in various inhibitory immunoreceptors, such as FcγRIIB, gp49B1, PIRB and MAFA, is required and sufficient for their inhibitory action by recruiting SHIPs and SHPs through SH2–phosphotyrosine interactions.

ACTIVE CUTANEOUS ANAPHYLAXIS

A skin inflammatory response induced by the injection of antigen in subjects who have undergone active immunization with antigen, instead of passive priming with IgE.

PASSIVE CUTANEOUS ANAPHYLAXIS

An inflammatory response that can be elicited within minutes of antigen challenge in IgE-primed (and, in the mouse, IgG1-primed) skin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, T., Galli, S. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2, 773–786 (2002). https://doi.org/10.1038/nri914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing