Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

γδ T cells: functional plasticity and heterogeneity

Key Points

  • γδ T cells are a unique and highly conserved lineage of T cells.

  • Differences in their tissue distribution and the types and mode of antigen recognition distinguish γδ T cells from αβ T cells.

  • The potential for γδ T-cell antigen receptor diversity and the number of unique antigen receptors that can be generated is greater than that of αβ T cells and B cells combined. This potential is, however, not realized.

  • γδ T cells are the first lineage of T cells to be generated; most populations are produced during fetal development.

  • Genetic and environmental factors operate to produce or select populations of γδ T cells that express antigen receptors encoded by specific gene segments. Human and mouse γδ T-cell repertoires are characterized by cells that express antigen receptors that are encoded by a single - and -gene segment

  • Increased numbers of γδ T cells have been described in a variety of infectious and autoimmune diseases.

  • In experimental animal models of inflammation, γδ T-cell involvement is staged; it occurs before and/or after αβ T-cell responses, coincident with or after the removal of the inflammatory stimulus. Functional analyses suggest that γδ T cells perform immunoregulatory functions that are complementary to the function of αβ T cells.

  • The functions that are carried out by γδ T cells change as the immune response progresses; different populations of γδ T cells, which are defined by differences in TCR Vγ–Vδ gene-segment usage, perform different functions during the early and later stages of pathogen-induced immune responses. The regulated and differential expression of γδ TCR co-receptors by target cells also serves to restrict and regulate γδ T-cell effector function.

  • Further insights into the biological function of γδ T cells will be provided by defining the populations of γδ T cells that are involved in a particular response and the conditions under which they are normally activated.

Abstract

γδ T cells remain an enigma. They are capable of generating more unique antigen receptors than αβ T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of γδ T cells in infectious and autoimmune diseases, we argue that γδ T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the mouse T-cell receptor γ- and δ-gene loci.
Figure 2: Mouse γδ T-cell generation is developmentally programmed.
Figure 3: γδ T cells contribute to different stages of inflammatory immune responses.

Similar content being viewed by others

References

  1. Heilig, J. S. & Tonegawa, S. Diversity of murine γ-genes and expression in fetal and adult lymphocytes. Nature 322, 836 (1986).

    CAS  PubMed  Google Scholar 

  2. Asarnow, D. M. et al. Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55, 837–847 (1988).

    CAS  PubMed  Google Scholar 

  3. Itohara, S. et al. Homing of a γδ thymocyte subset with homogenous T-cell receptors to mucosal epithelia. Nature 343, 754–757 (1990).References 1–3 establish the extent of junctional diversity of distinct populations of γδ T cells at different anatomical sites in fetal and adult mice.

    CAS  PubMed  Google Scholar 

  4. Carding, S. R. et al. Developmentally regulated fetal thymic and extrathymic T-cell receptor γδ gene expression. Genes Dev. 4, 1304–1315 (1990).

    CAS  PubMed  Google Scholar 

  5. McVay, L. D. & Carding, S. R. Extrathymic generation of human γδ T cells during fetal development. J. Immunol. 157, 2873–2882 (1996).

    CAS  PubMed  Google Scholar 

  6. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    CAS  PubMed  Google Scholar 

  7. McVay, L. D., Jaswal, S. S., Kennedy, C., Hayday, A. C. & Carding, S. R. The generation of human γδ T-cell repertoires during fetal development. J. Immunol. 160, 5851–5860 (1998).

    CAS  PubMed  Google Scholar 

  8. Janeway, C. A. Jr, Jones, B. & Hayday, A. C. Specificity and function of T cells bearing γδ receptors. Immunol. Today 9, 73–76 (1988).

    PubMed  Google Scholar 

  9. McVay, L. D. & Carding, S. R. Generation of human γδ T-cell repertoires. Crit. Rev. Immunol. 19, 431–460 (1999).

    CAS  PubMed  Google Scholar 

  10. Hayday, A. C. γδ T cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    CAS  PubMed  Google Scholar 

  11. Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med. 171, 1597–1612 (1990).

    CAS  PubMed  Google Scholar 

  12. Lefranc, M. P. et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Asarnow, D. M., Cado, D. & Raulet, D. Selection is not required to produce invariant T-cell receptor γ-gene functional sequences. Nature 362, 158–160 (1993).

    CAS  PubMed  Google Scholar 

  14. Itohara, S. et al. T-cell receptor δ-gene mutant mice: independent generation of αβ T cells and programmed rearrangement of γδ genes. Cell 72, 337–348 (1993).

    CAS  PubMed  Google Scholar 

  15. Mallick-Wood, C. A. et al. Conservation of a T-cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998).

    CAS  PubMed  Google Scholar 

  16. Hara, H. et al. Development of dendritic epidermal T cells with a skewed diversity of γδ TCRs in Vδ1-deficient mice. J. Immunol. 165, 3695–3705 (2000).

    CAS  PubMed  Google Scholar 

  17. Ferrero, I., Wilson, A., Beerman, F., Held, W. & MacDonald, H. R. T-cell receptor specificity is critical for the development of epidermal γδ T cells. J. Exp. Med. 194, 1473–1483 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Constant, P. et al. Stimulation of human γδ T cells by nonpeptide mycobacterial ligands. Science 264, 267–270 (1994).

    CAS  PubMed  Google Scholar 

  19. Tanaka, Y. et al. Natural and synthetic nonpeptide ligands for human γδ T cells. Nature 375, 155–158 (1995).

    CAS  PubMed  Google Scholar 

  20. Buckowski, J. F., Morita, C. T. & Brenner, M. B. Human γδ T cells recognise alkylamines derived from microbes, edible plants, tea: implications for innate immunity. Immunity 11, 57–65 (1999).References 18–20 establish the reactivity of human γδ T cells to non-protein, phosphorylated antigens.

    Google Scholar 

  21. O'Brien, R. L. et al. Heat-shock protein Hsp60-reactive γδ cells: a large, diversified T-lymphocyte subset with highly focused specificity. Proc. Natl Acad. Sci. USA 89, 4348–4352 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

    CAS  PubMed  Google Scholar 

  23. Buckowski, J. F., Morita, C. T., Band, H. & Brenner, M. B. Crucial role of TCRγ-chain junctional region in prenyl pyrophosphate antigen recognition. J. Immunol. 161, 286–293 (1998).

    Google Scholar 

  24. Bukowski, J. F., Morita, C. T., Tanaka, Y., Bloom, B. R. & Brenner, M. B. Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 154, 998–1006 (1995).

    CAS  PubMed  Google Scholar 

  25. Allison, T. J., Winter, C. C., Fournie, J.-J., Bonneville, M. & Garboczi, D. N. Structure of a human γδ T-cell antigen receptor. Nature 411, 820–824 (2001).

    CAS  PubMed  Google Scholar 

  26. Morita, C. T. et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3, 495–507 (1995).

    CAS  PubMed  Google Scholar 

  27. Belles, C., Kuhl, A, Nosheny, R. & Carding, S. R. Plasma membrane expression of heat-shock protein 60 in vivo in response to infection. Infect. Immun. 67, 4191–4200 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wen, L. et al. Primary γδ cell clones can be defined phenotypically and functionally as Th1/Th2 cells and illustrate the association of CD4 with Th2 differentiation. J. Immunol. 160, 1965–1974 (1998).

    CAS  PubMed  Google Scholar 

  29. Born, W., Cady, C., Jones-Carson, J., Lahn, M. & O'Brien, R. Immunoregulatory functions of γδ T cells. Adv. Immunol. 71, 77–144 (1999).

    CAS  PubMed  Google Scholar 

  30. Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

    CAS  PubMed  Google Scholar 

  31. Augustin, A., Kubo, R. T. & Sim, G.-K. Resident pulmonary lymphocytes expressing the γδ T-cell receptor. Nature 340, 239–241 (1989).

    CAS  PubMed  Google Scholar 

  32. Carding, S. R. et al. Late dominance of the inflammatory process in murine influenza by γδ+ T cells. J. Exp. Med. 172, 1225–1231 (1990).This paper established the staging of the γδ T-cell response to (viral) infection.

    CAS  PubMed  Google Scholar 

  33. Carding, S. R., Allan, W., McMickle, A. & Doherty, P. C. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. J. Exp. Med. 177, 475–482 (1993).

    CAS  PubMed  Google Scholar 

  34. Sarawar, S. et al. Cytokine profiles in brochoalveolar lavage cells from mice with infleunza pneumonia: consequences of CD4+ and CD8+ T-cell depletion. Reg. Immunol. 5, 142–150 (1993).

    CAS  PubMed  Google Scholar 

  35. Hou, S., Katz, J., Doherty, P. C. & Carding, S. R. Extent of γδ T-cell involvement in the pneumonia caused by Sendai virus. Cell. Immunol. 143, 183–193 (1992).

    CAS  PubMed  Google Scholar 

  36. Huber, S. A., Graveline, D., Born, W. K. & O'Brien, R. L. Cytokine production by Vγ1+ T-cell subsets is an important factor determining CD4+ Th-phenotype and susceptibility of BALB/C mice to Coxsackievirus B3-induced myocarditis. J. Virol. 75, 5860–5869 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sandor, M. et al. Two waves of γδ T cells expressing different Vδ genes are recruited into Schistosome-induced liver granulomas. J. Immunol. 155, 275–284 (1995).

    CAS  PubMed  Google Scholar 

  38. Carding, S. R. & Egan, P. J. The importance of γδ T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol. Rev. 173, 98–108 (2000).

    CAS  PubMed  Google Scholar 

  39. Belles, C. et al. Bias in the γδ T-cell response to Listeria monocytogenes. J. Immunol. 156, 4280–4289 (1996).

    CAS  PubMed  Google Scholar 

  40. Ladel, C. H., Blum, C. & Kaufmann, S. H. E. Control of natural killer cell-mediated innate resistance against the intracellular pathogen Listeria monocytogenes by γδ T lymphocytes. Infect. Immun. 64, 1744–1749 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrick, D. A. et al. Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373, 255–257 (1995).

    CAS  PubMed  Google Scholar 

  42. Mombaerts, P., Arnoldi, J., Russ, F., Tonegawa, S. & Kauffman, S. H. E. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365, 53–56 (1993).

    CAS  PubMed  Google Scholar 

  43. Fu, Y.-X. et al. Immune protection and control of inflammatory tissue necrosis by γδ T cells. J. Immunol. 153, 3101–3115 (1994).References 42 and 43 describe the outcome of L. monocytogenes infection in mice that lack γδ T cells, and show a dysregulated inflammatory response in these mice.

    CAS  PubMed  Google Scholar 

  44. Egan, P., Carding, S. R. Downmodulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J. Exp. Med. 191, 2145–2158 (2000).This paper identifies γδ T-cell-mediated killing of activated macrophages as a potential mechanism by which γδ T cells contribute to the downmodulation of inflammatory immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsieh, B. et al. In vivo cytokine production in murine Listeriosis: evidence for immunoregulation by γδ+ T cells. J. Immunol. 156, 232–237 (1996).

    CAS  PubMed  Google Scholar 

  46. O'Brien, R., Yin, X., Huber, S. A., Ikuta, K. & Born, W. Depletion of a γδ T-cell subset can increase host resistance to infection. J. Immunol. 165, 6472–6479 (2000).This paper provides direct evidence that populations of γδ T cells that express different Vγ-encoded TCRs carry out distinct functions during infection.

    CAS  PubMed  Google Scholar 

  47. Wallace, M. et al. Functional γδ T-lymphocyte defect associated with human immunodeficiency virus infections. Mol. Med. 3, 60–71 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, B. et al. Disease-specific changes in γδ T-cell repertoire and function in patients with pulmonary tuberculosis. J. Immunol. 157, 4222–4229 (1996).

    CAS  PubMed  Google Scholar 

  49. Li, B. et al. Involvement of Fas/Fas-ligand pathway in activation-induced cell death of mycobacteria-reactive human γδ T cells: a mechanism for the loss of γδ T cells in patients with pulmonary tuberculosis. J. Immunol. 161, 1558–1567 (1998).

    CAS  PubMed  Google Scholar 

  50. Mukasa, A., Lahn, M., Pflum, E. K., Born, W. & O'Brien, R. Evidence that the same γδ T cells respond during infection-induced and autoimmune inflammation. J. Immunol. 159, 5787–5794 (1997).

    CAS  PubMed  Google Scholar 

  51. Olive, C. Modulation of experimental allergic encephalomyelitis in mice by immunization with a peptide specific for the γδ T-cell receptor. Immunol. Cell Biol. 75, 102–106 (1997).

    CAS  PubMed  Google Scholar 

  52. Harrison, L. C., Dempsey-Collier, M., Kramer, D. R. & Takahashi, K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng, S., Madaio, M., Hayday, A. C. & Craft, J. Propagation and regulation of systemic autoimmunity by γδ T cells. J. Immunol. 157, 5689–5698 (1996).

    CAS  PubMed  Google Scholar 

  54. Holoshitz, J. Activation of γδ T cells by mycobacterial antigens in rheumatoid arthritis. Microbes Infect. 1, 197–202 (1999).

    CAS  PubMed  Google Scholar 

  55. Corthay, A., Johansson, A., Vestgerg, M. & Holmdahl, R. Collagen-induced arthritis development requires αβ T cells but not γδ T cells: studies with T-cell-deficient (TCR mutant) mice. Int. Immunol. 11, 1065–1073 (1999).

    CAS  PubMed  Google Scholar 

  56. Peterman, G. M., Spencer, C., Sperling, A. I. & Bluestone, J. A. Role of γδ T cells in murine collagen-induced arthritis. J. Immunol. 151, 6546–6558 (1993).

    CAS  PubMed  Google Scholar 

  57. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    CAS  PubMed  Google Scholar 

  58. Giradi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Google Scholar 

  59. Das, H. et al. MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 15, 83–89 (2001).

    CAS  PubMed  Google Scholar 

  60. Leishman, A. J. et al. T-cell responses modulated through interaction between CD8αα and the non-classical MHC class I molecule, TL. Science 294, 1936–1939 (2001).References 58–60 identify and show the importance of γδ TCR co-receptors in the activation of epithelia-associated γδ T cells, and in determining their effector phenotype.

    CAS  PubMed  Google Scholar 

  61. Fahrer, A. M. et al. Attributes of γδ intraepithelial lymphocytes suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA 98, 10261–10266 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 435–444 (2001).

    Google Scholar 

  63. WHO-IUIS Nomencalture Sub-Committee on TCR Designation. Nomenclature for T-cell receptor (TCR) gene segments of the immune system. Immunogenetics 42, 451–453 (1995).

  64. Davis, M. M. in Immunology (ed. Schwartz, B. D.) 44–61 (Upjohn Company, Kalamazoo, Michigan, 1991).

    Google Scholar 

  65. Egan, P., Belles, C. & Carding, S. The properties of γδ T-cells. Biochemist 20, 29–33 (1998).

    CAS  Google Scholar 

  66. Fu, Y.-X. et al. In vivo response of murine γδ T cells to a heat-shock protein-derived peptide. Proc. Natl Acad. Sci. USA 90, 322–326 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fu, Y. et al. Structural requirements for peptides that stimulate a subset of γδ T cells. J. Immunol. 152, 1578–1588 (1994).

    CAS  PubMed  Google Scholar 

  68. Ponniah, S., Doherty, P. C. & Eichelberger, M. Selective response of γδ T-cell hybridomas to orthomyxovirus-infected cells. J. Virol. 70, 17–22 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Matis, L. A. et al. Structure and specificity of a class II MHC alloreactive γδ T-cell receptor heterodimer. Science 245, 746–748 (1989).

    CAS  PubMed  Google Scholar 

  70. Schild, H. et al. The nature of major histocompatibility complex recognition by γδ T cells. Cell 76, 29–37 (1994).

    CAS  PubMed  Google Scholar 

  71. Johnson, R. M. et al. A murine CD4CD8 T-cell receptor γδ T-lymphocyte clone specific for herpes simplex virus glycoprotein I. J. Immunol. 148, 983–988 (1992).

    CAS  PubMed  Google Scholar 

  72. Sciammas, R. et al. Unique antigen recognition by a herpesvirus-specific TCR-γδ cell. J. Immunol. 152, 5392–5397 (1994).

    CAS  PubMed  Google Scholar 

  73. Sciammas, R., Kodukula, P., Tang, Q., Hendricks, R. L. & Bluestone, J. A. T-cell receptor-γδ cells protect mice from herpes simplex virus type-1-induced lethal encephalitis. J. Exp. Med. 185, 1969–1975 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bonneville, M. et al. Recognition of a self major histocompatibility complex TL gene product by γδ T-cell receptors. Proc. Natl Acad. Sci. USA 86, 5928–5932 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Weintraub, B. C., Jackson, M. R. & Hedrick, S. M. γδ T cells can recognize non-classical MHC in the absence of conventional antigenic peptides. J. Immunol. 153, 3051–3058 (1994).

    CAS  PubMed  Google Scholar 

  76. Havran, W. L., Chein, Y. & Allison, J. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

    CAS  PubMed  Google Scholar 

  77. Barrett, T. R. et al. Differential function of intestinal intraepithelial lymphocyte subsets. J. Immunol. 149, 1124–1130 (1992).

    CAS  PubMed  Google Scholar 

  78. Fujihashi, K. et al. Immunoregulatory functions for murine intraepithelial lymphocytes: γδ T-cell receptor positive (TCR+) T cells abrogate oral tolerance, while αβ TCR+ T cells provide B-cell help. J. Exp. Med. 175, 695–707 (1992).

    CAS  PubMed  Google Scholar 

  79. Boismenu, R., Feng, L., Xia, Y. Y., Chang, C. C. & Havran, W. L. Chemokine expression by intraepithelial γδ T cells. J. Immunol. 157, 985–992 (1996).

    CAS  PubMed  Google Scholar 

  80. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).This paper shows reactivity of human intestinal intraepithelial γδ T cells with the stress-inducible proteins, MICA and MICB, providing evidence for a tumour-surveillance function of γδ T cells.

    CAS  PubMed  Google Scholar 

  81. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vincent, M. S. et al. Apoptosis of FashiCD4+ synovial T cells by Borrelia-reactive Fas-ligandhigh γδ T cells in Lyme arthritis. J. Exp. Med. 184, 2109–2117 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vincent, M. S. et al. Lyme arthritis synovial γδ T cells respond to Borrelia burgdorferi lipoproteins and lipidated hexapeptides. J. Immunol. 161, 5762–5771 (1998).

    CAS  PubMed  Google Scholar 

  84. Spits, H., Paliard, X., Engelhard, V. H. & De Vries, J. E. Cytotoxic activity and lymphokine production of T-cell receptor (TCR)-αβ and TCR-γδ+ cytotoxic T lymphocytes (CTL) clones recognizing HLA-A2 and HLA-A2 mutants. J. Immunol. 144, 4156–4162 (1990).

    CAS  PubMed  Google Scholar 

  85. Ciccone, E. et al. Specificity of human T lymphocytes expressing a γδ T-cell antigen receptor. Recognition of a polymorphic determinant of HLA class I molecules by a γδ clone. Eur. J. Immunol. 19, 1267–1271 (1989).

    CAS  PubMed  Google Scholar 

  86. Porcelli, S. et al. Recognition of cluster of differentiation antigen 1 by human CD4CD8—cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    CAS  PubMed  Google Scholar 

  87. Faure, F., Jitsukawa, S., Miossec, C. & Hercend, T. CD1c as a target recognition structure for human T lymphocytes: analysis with peripheral blood γδ cells. Eur. J. Immunol. 20, 703–706 (1990).

    CAS  PubMed  Google Scholar 

  88. Miyagawa, F., Tanaka, Y., Yamashita, S. & Minato, N. Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human γδ T cells by aminobisphosphonate antigen. J. Immunol. 166, 5508–5514 (2001).

    CAS  PubMed  Google Scholar 

  89. Rust, C. J. J., Verreck, F., Vieter, H. & Koning, F. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with the Vγ9 region. Nature 346, 572–574 (1990).

    CAS  PubMed  Google Scholar 

  90. Loh, E. Y. et al. Gene transfer studies of T-cell receptor-γδ recognition: specificity for staphylococcal enterotoxin A is conveyed by Vγ9 alone. J. Immunol. 152, 3324–3332 (1994).

    CAS  PubMed  Google Scholar 

  91. Holoshitz, J., Vila, L. M., Keroack, B. J., McKinley, D. R. & Bayne, N. K. Dual antigen recognition by cloned human γδ T cells. J. Clin. Invest. 89, 308–314 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fisch, P. et al. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt's lymphoma cells. Science 250, 1269–1273 (1990).

    CAS  PubMed  Google Scholar 

  93. Garman, R. D., Doherty, P. J. & Raulet, D. H. Diversity, rearrangement and expression of murine T-cell γ-genes. Cell 45, 733–742 (1986.)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Institutes of Health and The Wellcome Trust. P.J.E. is supported by an Industry Research Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Carding.

Related links

Related links

DATABASES

Entrez

HIV-1

Listeria monocytogenes

Mycobacterium tuberculosis

Sendai virus

LocusLink

β2-microglobulin

CD1

CD8

Fas

FasL

H60

HSP60

IL-4

IL-10

IFN-γ

KGF

MICA

MICB

TNF-α

OMIM

rheumatoid arthritis

type 1 diabetes

FURTHER INFORMATION

IMGT, ImMunoGeneTics database

Simon Carding's laboratory

Immunology at Leeds University

Glossary

OLIGOCLONALITY

A limited or small number of (T-cell) clones, as defined by the number of unique or individual antigen-receptor sequences identified in a population of cells.

T HELPER 1/T HELPER 2

(TH1/TH2). Subsets of CD4+ αβ T cells that are characterized by the cytokines they produce. TH1 T cells are generally involved in activating macrophages, whereas TH2 cells are involved in activating B cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carding, S., Egan, P. γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2, 336–345 (2002). https://doi.org/10.1038/nri797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing