Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction

Abstract

In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models contrasting IL-15 and IL-2 signalling and the regulation of naive versus tissue-resident effector memory T cells.
Figure 2: IL-15 has pleiotropic effects on tissue-resident cells that promote TH1 cell-mediated responses and tissue destruction.
Figure 3: IL-15, NKG2D and the TCR function in synergy to enable CTLs to kill distressed target cells.
Figure 4: Proposed roles of IL-15 in tissue protection and tissue destruction.
Figure 5: Lack of IL-15 expression by tissue cells is associated with latent autoimmunity.

Similar content being viewed by others

References

  1. Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin 12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med. 189, 1315–1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor, G. A., Feng, C. G. & Sher, A. Control of IFN-γ-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). Microbes Infect. 9, 1644–1651 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Valentine, L., Potts, R. & Premenko-Lanier, M. CD8+ T cell-derived IFN-γ prevents infection by a second heterologous virus. J. Immunol. 189, 5841–5848 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Antonelli, A., Ferrari, S. M., Corrado, A., Di Domenicantonio, A. & Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 14, 174–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9, 858–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Walker, L. S. & von Herrath, M. CD4 T cell differentiation in type 1 diabetes. Clin. Exp. Immunol. http://dx.doi.org/10.1111/cei.12672 (2015).

  7. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Bergamaschi, C. et al. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood 120, e1–e8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mortier, E., Woo, T., Advincula, R., Gozalo, S. & Ma, A. IL-15Rα chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J. Exp. Med. 205, 1213–1225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ota, N., Takase, M., Uchiyama, H., Olsen, S. K. & Kanagawa, O. No requirement of trans presentations of IL-15 for human CD8 T cell proliferation. J. Immunol. 185, 6041–6048 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wuest, S. C. et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat. Med. 17, 604–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mishra, A., Sullivan, L. & Caligiuri, M. A. Molecular pathways: interleukin-15 signaling in health and in cancer. Clin. Cancer Res. 20, 2044–2050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colpitts, S. L. et al. Cutting edge: the role of IFN-α receptor and MyD88 signaling in induction of IL-15 expression in vivo. J. Immunol. 188, 2483–2487 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, R., Wei, H., Sun, R., Zhang, J. & Tian, Z. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc. Natl Acad. Sci. USA 104, 7512–7515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abadie, V. & Jabri, B. IL-15: a central regulator of celiac disease immunopathology. Immunol. Rev. 260, 221–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waldmann, T. A. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J. Investig. Dermatol. Symp. Proc. 16, S28–S30 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Harada, S. et al. Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 42, 1508–1516 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. McInnes, I. B. et al. The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat. Med. 2, 175–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Vaknin-Dembinsky, A., Brass, S. D., Gandhi, R. & Weiner, H. L. Membrane bound IL-15 is increased on CD14 monocytes in early stages of MS. J. Neuroimmunol. 195, 135–139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouchaud, G. et al. Epidermal IL-15Rα acts as an endogenous antagonist of psoriasiform inflammation in mouse and man. J. Exp. Med. 210, 2105–2117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Villadsen, L. S. et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J. Clin. Invest. 112, 1571–1580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aringer, M. et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology (Oxford) 40, 876–881 (2001).

    Article  CAS  Google Scholar 

  25. Robak, E. et al. Proinflammatory interferon-gamma-inducing monokines (interleukin-12, interleukin-18, interleukin-15)—serum profile in patients with systemic lupus erythematosus. Eur. Cytokine Netw. 13, 364–368 (2002).

    CAS  PubMed  Google Scholar 

  26. Chen, J. et al. Insulin-dependent diabetes induced by pancreatic β cell expression of IL-15 and IL-15Rα. Proc. Natl Acad. Sci. USA 110, 13534–13539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Mlecnik, B. et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl Med. 6, 228ra37 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sheridan, B. S. & Lefrancois, L. Intraepithelial lymphocytes: to serve and protect. Curr. Gastroenterol. Rep. 12, 513–521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Forrester, J. V., Xu, H., Lambe, T. & Cornall, R. Immune privilege or privileged immunity? Mucosal Immunol. 1, 372–381 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Simpson, E. A historical perspective on immunological privilege. Immunol. Rev. 213, 12–22 (2006).

    Article  PubMed  Google Scholar 

  34. McKenna, K. C. & Kapp, J. A. Ocular immune privilege and CTL tolerance. Immunol. Res. 29, 103–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Weaver, C. T. & Hatton, R. D. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat. Rev. Immunol. 9, 883–889 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. DePaolo, R. W. et al. A specific role for TLR1 in protective TH17 immunity during mucosal infection. J. Exp. Med. 209, 1437–1444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thome, J. J. & Farber, D. L. Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol. 36, 428–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deshpande, P. et al. IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. J. Immunol. 190, 1416–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, R. B. et al. IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc. Natl Acad. Sci. USA 110, 8158–8163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roberts, A. I. et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J. Immunol. 167, 5527–5530 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lang, K. S. et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 11, 138–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. de Kauwe, A. L. et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J. Immunol. 182, 7440–7450 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. DePaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, S. K., Schluns, K. S. & Lefrancois, L. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J. Immunol. 163, 4125–4132 (1999).

    CAS  PubMed  Google Scholar 

  53. Marietta, E. et al. A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J. Clin. Invest. 114, 1090–1097 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Setty, M. et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149, 681–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Long, S. A., Buckner, J. H. & Greenbaum, C. J. IL-2 therapy in type 1 diabetes: “Trials” and tribulations. Clin. Immunol. 149, 324–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ring, A. M. et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat. Immunol. 13, 1187–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Imamichi, H., Sereti, I. & Lane, H. C. IL-15 acts as a potent inducer of CD4+CD25hi cells expressing FOXP3. Eur. J. Immunol. 38, 1621–1630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin, S. J. et al. Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4+CD25+ T cells. Immunol. Res. 60, 105–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Litjens, N. H. et al. Allogeneic mature human dendritic cells generate superior alloreactive regulatory T cells in the presence of IL-15. J. Immunol. 194, 5282–5293 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Marshall, D., Sinclair, C., Tung, S. & Seddon, B. Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. J. Immunol. 193, 5525–5533 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Raynor, J. et al. IL-15 fosters age-driven regulatory T cell accrual in the face of declining IL-2 levels. Front. Immunol. 4, 161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. D'Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat. Immunol. 6, 1152–1159 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Maloy, K. J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat. Immunol. 6, 1071–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Lenardo, M. et al. Mature T lymphocyte apoptosis—immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Ohta, N. et al. IL-15-dependent activation-induced cell death-resistant Th1 type CD8 αβ+NK1.1+ T cells for the development of small intestinal inflammation. J. Immunol. 169, 460–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110 (2001).

    CAS  PubMed  Google Scholar 

  70. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Burkett, P. R. et al. IL-15Rα expression on CD8+ T cells is dispensable for T cell memory. Proc. Natl Acad. Sci. USA 100, 4724–4729 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Ben Ahmed, M. et al. IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. J. Immunol. 182, 6763–6770 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Ruprecht, C. R. et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med. 201, 1793–1803 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Mention, J. J. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125, 730–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cui, G. et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc. Natl Acad. Sci. USA 111, 1915–1920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Doherty, T. M., Seder, R. A. & Sher, A. Induction and regulation of IL-15 expression in murine macrophages. J. Immunol. 156, 735–741 (1996).

    CAS  PubMed  Google Scholar 

  80. Dubois, S. P., Waldmann, T. A. & Muller, J. R. Survival adjustment of mature dendritic cells by IL-15. Proc. Natl Acad. Sci. USA 102, 8662–8667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mattei, F., Schiavoni, G., Belardelli, F. & Tough, D. F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167, 1179–1187 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Orinska, Z. et al. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities. Nat. Med. 13, 927–934 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Miranda-Carus, M. E. et al. Peripheral blood T lymphocytes from patients with early rheumatoid arthritis express RANKL and interleukin-15 on the cell surface and promote osteoclastogenesis in autologous monocytes. Arthritis Rheum. 54, 1151–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Schneider, R. et al. B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. J. Immunol. 187, 4119–4128 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Rappl, G. et al. Dermal fibroblasts sustain proliferation of activated T cells via membrane-bound interleukin-15 upon long-term stimulation with tumor necrosis factor-α. J. Invest. Dermatol. 116, 102–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Ma, L. J., Acero, L. F., Zal, T. & Schluns, K. S. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8αα IELs. J. Immunol. 183, 1044–1054 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Reinecker, H. C., MacDermott, R. P., Mirau, S., Dignass, A. & Podolsky, D. K. Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111, 1706–1713 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Zdrenghea, M. T. et al. RSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells. Eur. Respir. J. 39, 712–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Xing, L. et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruckert, R. et al. Inhibition of keratinocyte apoptosis by IL-15: a new parameter in the pathogenesis of psoriasis? J. Immunol. 165, 2240–2250 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Bo, H. et al. Elevated expression of transmembrane IL-15 in immune cells correlates with the development of murine lupus: a potential target for immunotherapy against SLE. Scand. J. Immunol. 69, 119–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Maiuri, L. et al. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 119, 996–1006 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Kirman, I. & Nielsen, O. H. Increased numbers of interleukin-15-expressing cells in active ulcerative colitis. Am. J. Gastroenterol. 91, 1789–1794 (1996).

    CAS  PubMed  Google Scholar 

  95. Liu, Z. et al. IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J. Immunol. 164, 3608–3615 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Vainer, B., Nielsen, O. H., Hendel, J., Horn, T. & Kirman, I. Colonic expression and synthesis of interleukin 13 and interleukin 15 in inflammatory bowel disease. Cytokine 12, 1531–1536 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Agostini, C. et al. Role of IL-15, IL-2, and their receptors in the development of T cell alveolitis in pulmonary sarcoidosis. J. Immunol. 157, 910–918 (1996).

    CAS  PubMed  Google Scholar 

  98. Waldmann, T. A. & Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 17, 19–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Ohteki, T., Suzue, K., Maki, C., Ota, T. & Koyasu, S. Critical role of IL-15–IL-15R for antigen-presenting cell functions in the innate immune response. Nat. Immunol. 2, 1138–1143 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Yu, X. et al. Artificial antigen-presenting cells plus IL-15 and IL-21 efficiently induce melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Asian Pac. J. Trop. Med. 6, 467–472 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Anguille, S. et al. Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Hum. Vaccin. Immunother. 9, 1956–1961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Steel, J. C., Waldmann, T. A. & Morris, J. C. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol. Sci. 33, 35–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Pandiyan, P. et al. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. J. Immunol. 189, 4237–4246 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Castillo, E. F. & Schluns, K. S. Regulating the immune system via IL-15 transpresentation. Cytokine 59, 479–490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ebert, E. C. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 115, 1439–1445 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Jabri, B. & Ebert, E. Human CD8+ intraepithelial lymphocytes: a unique model to study the regulation of effector cytotoxic T lymphocytes in tissue. Immunol. Rev. 215, 202–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Riha, P. & Rudd, C. E. CD28 co-signaling in the adaptive immune response. Self Nonself 1, 231–240 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tang, F. et al. Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J. Exp. Med. 206, 707–719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sutherland, C. L. et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J. Immunol. 168, 671–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Jabri, B. et al. TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 17, 487–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  113. Meresse, B. et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 203, 1343–1355 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2, 255–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, C., Zhang, J., Niu, J. & Tian, Z. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 42, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Upshaw, J. L. & Leibson, P. J. NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin. Immunol. 18, 167–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cao, D. et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol. 33, 215–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Mottonen, M. et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol. 140, 360–367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Maul, J. et al. Peripheral and intestinal regulatory CD4+ CD25high T cells in inflammatory bowel disease. Gastroenterology 128, 1868–1878 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Sitohy, B., Hammarstrom, S., Danielsson, A. & Hammarstrom, M. L. Basal lymphoid aggregates in ulcerative colitis colon: a site for regulatory T cell action. Clin. Exp. Immunol. 151, 326–333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA 97, 11445–11450 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lilley, B. N. & Ploegh, H. L. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol. Rev. 207, 126–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Maeurer, M., Seliger, B., Trinder, P., Gerdes, J. & Seitzer, U. Interleukin-15 in mycobacterial infection of antigen-presenting cells. Scand. J. Immunol. 50, 280–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, T., Nishimura, H., Matsuguchi, T. & Yoshikai, Y. Differences in interleukin-12 and -15 production by dendritic cells at the early stage of Listeria monocytogenes infection between BALB/c and C57 BL/6 mice. Cell. Immunol. 202, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Dann, S. M. et al. Interleukin-15 activates human natural killer cells to clear the intestinal protozoan Cryptosporidium. J. Infect. Dis. 192, 1294–1302 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Braun, M. et al. NK cell activation in human hantavirus infection explained by virus-induced IL-15/IL15Rα expression. PLoS Pathog. 10, e1004521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fawaz, L. M., Sharif-Askari, E. & Menezes, J. Up-regulation of NK cytotoxic activity via IL-15 induction by different viruses: a comparative study. J. Immunol. 163, 4473–4480 (1999).

    CAS  PubMed  Google Scholar 

  133. Zhou, R., Wei, H., Sun, R. & Tian, Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. J. Immunol. 178, 4548–4556 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Rausch, A. et al. Interleukin-15 mediates protection against experimental tuberculosis: a role for NKG2D-dependent effector mechanisms of CD8+ T cells. Eur. J. Immunol. 36, 1156–1167 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Perera, L. et al. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm. Bowel Dis. 13, 298–307 (2007).

    Article  PubMed  Google Scholar 

  136. Gonzalez, S., Groh, V. & Spies, T. Immunobiology of human NKG2D and its ligands. Curr. Top. Microbiol. Immunol. 298, 121–138 (2006).

    CAS  PubMed  Google Scholar 

  137. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gosselin, J., TomoIu, A., Gallo, R. C. & Flamand, L. Interleukin-15 as an activator of natural killer cell-mediated antiviral response. Blood 94, 4210–4219 (1999).

    CAS  PubMed  Google Scholar 

  139. Nguyen, K. B. et al. Coordinated and distinct roles for IFN-αβ, IL-12, and IL-15 regulation of NK cell responses to viral infection. J. Immunol. 169, 4279–4287 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Sharif-Askari, E., Fawaz, L. M., Tran, P., Ahmad, A. & Menezes, J. Interleukin 15-mediated induction of cytotoxic effector cells capable of eliminating Epstein–Barr virus-transformed/immortalized lymphocytes in culture. J. Natl Cancer Inst. 93, 1724–1732 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Lanier, L. L. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol. 8, 259–268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Losy, J., Niezgoda, A. & Zaremba, J. IL-15 is elevated in sera of patients with relapsing-remitting multiple sclerosis. Folia Neuropathol. 40, 151–153 (2002).

    PubMed  Google Scholar 

  143. Allez, M. et al. CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132, 2346–2358 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J. L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 100, 9452–9457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. de Menthon, M. et al. Excessive interleukin-15 transpresentation endows NKG2D+CD4+ T cells with innate-like capacity to lyse vascular endothelium in granulomatosis with polyangiitis (Wegener's). Arthritis Rheum. 63, 2116–2126 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Kuczynski, S. et al. IL-15 is elevated in serum patients with type 1 diabetes mellitus. Diabetes Res. Clin. Pract. 69, 231–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Malchow, S. et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339, 1219–1224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fridman, W. H. et al. Immune infiltration in human cancer: prognostic significance and disease control. Curr. Top. Microbiol. Immunol. 344, 1–24 (2011).

    CAS  PubMed  Google Scholar 

  151. Rubinstein, M. P. et al. Converting IL-15 to a superagonist by binding to soluble IL-15Rα. Proc. Natl Acad. Sci. USA 103, 9166–9171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wong, H. C., Jeng, E. K. & Rhode, P. R. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8 T cells into innate-like effector cells with antitumor activity. Oncoimmunology 2, e26442 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Maas, R. A., Dullens, H. F. & Den Otter, W. Interleukin-2 in cancer treatment: disappointing or (still) promising? A review. Cancer Immunol. Immunother. 36, 141–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  154. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons α/β in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Hammad, H. & Lambrecht, B. N. Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. De Nitto, D., Monteleone, I., Franze, E., Pallone, F. & Monteleone, G. Involvement of interleukin-15 and interleukin-21, two γ-chain-related cytokines, in celiac disease. World J. Gastroenterol. 15, 4609–4614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Spolski, R. & Leonard, W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Sutherland, A. P. et al. IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. J. Immunol. 190, 3977–3984 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Umlauf, S. W. et al. Molecular regulation of the IL-2 gene: rheostatic control of the immune system. Immunol. Rev. 133, 177–197 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank patients with coeliac disease and their family members, as well as the University of Chicago Coeliac Disease Center, for supporting their research. The authors also thank L.B. Barreiro and B. Sally for critical reading of the manuscript. The work was supported by grants from the Digestive Diseases Research Core Center (DK42086) at the University of Chicago, from the US National Institutes of Health (R01DK67180 and R01DK098435) to B.J. and from the SickKids Foundation (NI15-040) to V.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bana Jabri or Valérie Abadie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Activation-induced cell death

(AICD). A phenomenon in T cells, in which activation through the T cell receptor results in apoptosis. CD95 (also known as Fas) and its ligand (CD95L) are the main regulators of AICD, and the engagement of CD95 ultimately leads to DNA cleavage by caspase-activated DNase (CAD).

Latent autoimmune diabetes in adults

(LADA). A disorder characterized by the presence of diabetes-associated autoantibodies and islet-reactive T cells in the absence of β-cell destruction and overt diabetes.

Lymphokine-activated killer activity

(LAK activity). The ability of T cells to lyse target cells in the absence of specific antigenic stimuli and MHC restriction. LAK cells can be generated in vitro in the presence of interleukin-15 (IL-15) or high concentrations of IL-2.

Potential coeliac disease

A form of coeliac disease defined by the presence of transglutaminase- and gluten-specific antibodies and compatible HLA molecules in the absence of villous atrophy.

Tissue-resident effector memory T cells

(TRM cells). A population of non-circulating memory T cells with an effector-like phenotype that have entered tissues during the effector phase of immune responses and can permanently reside in tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabri, B., Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 15, 771–783 (2015). https://doi.org/10.1038/nri3919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing