Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating nucleic acid-sensing pathways into therapies

Key Points

  • Endosomal and cytosolic nucleic acid receptors sense microbial nucleic acids and initiate innate immune responses. However, in some circumstances their activation by endogenous nucleic acids can also contribute to autoinflammation.

  • Nucleic acid sensors and their signalling pathways constitute promising drug targets for which synthetic oligonucleotide drugs as well as low-molecular-weight compounds are currently being developed.

  • Agonists of nucleic acid sensors function as immunostimulants and have uses in cancer immunotherapy or as vaccine adjuvants. The key challenge is to limit systemic inflammation.

  • Antagonists are being developed as immunomodulators for autoimmune diseases including systemic lupus erythematosus and psoriasis, and for autoinflammatory conditions (for example, type I interferonopathies). The key challenge is to design clinical proof-of-concept studies in which the pharmacological profile of antagonists is matched to the molecular phenotype of patients.

  • In vitro use of these compounds and results from animal studies as well as ongoing clinical trials are leading to a better molecular understanding of these indications. This, in turn, enables further drug discovery efforts for better therapy of diseases with high unmet medical need.

Abstract

Nucleic acid sensing by innate receptors initiates immune defences against viruses and other pathogens. A hallmark of this response is the release of interferons (IFNs), which promote protective immunity by inducing IFN-stimulated genes (ISGs). A similar ISG signature is found in autoinflammatory and autoimmune conditions, indicating that chronic activation of nucleic acid-sensing pathways may contribute to these diseases. Here, we review how nucleic acid-sensing pathways are currently being targeted pharmacologically with both agonists and antagonists. We discuss how an improved understanding of the biology of these pathways is leading to novel therapies for infections, cancer, and autoimmune and autoinflammatory disorders, and how new therapeutics will, in turn, generate a deeper understanding of these complex diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endosomal and cytosolic nucleic acid-sensing pathways that provide pharmacological targets.
Figure 2: Access routes of self or foreign DNA and RNA to endosomes and to the cytosol.
Figure 3: Hypotheses about nucleic acid sensor activity and expression of the ISG signature over time in different physiological states.
Figure 4: Classification of interferon-associated inflammatory diseases.

Similar content being viewed by others

References

  1. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Egli, A., Santer, D. M., O'Shea, D., Tyrrell, D. L. & Houghton, M. The impact of the interferon-λ family on the innate and adaptive immune response to viral infections. Emerg. Microbes Infect. 3, e51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pichlmair, A. & Reis, E. Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. García-Sastre, A. 2 methylate or not 2 methylate: viral evasion of the type I interferon response. Nat. Immunol. 12, 114–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Morita, M. et al. Gene-targeted mice lacking the trex1 (DNase III) 3′→5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell. Biol. 24, 6719–6727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ahn, J., Ruiz, P. & Barber, G. N. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J. Immunol. 193, 4634–4642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan, M. P. et al. DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat. Commun. 6, 5853 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Pawaria, S. et al. Cutting edge: DNase II deficiency prevents activation of autoreactive B cells by double-stranded DNA endogenous ligands. J. Immunol. 194, 1403–1407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). This study was the first to indicate a crucial role for cytosolic sensing of self DNA in tumour surveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007). This was the first paper to demonstrate that an antimicrobial peptide from psoriatic skin shuttles DNA into cells and induces type I IFN release via TLR9.

    Article  CAS  PubMed  Google Scholar 

  15. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004). This paper demonstrates that sera from patients with SLE can form immune complexes with necrotic material and induce type I IFN release from pDCs.

    Article  CAS  PubMed  Google Scholar 

  16. Bave, U. et al. Activation of the type I interferon system in primary Sjogren's syndrome: a possible etiopathogenic mechanism. Arthritis Rheum. 52, 1185–1195 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Blasius, A. L. & Beutler, B. Intracellular toll-like receptors. Immunity 32, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Ohto, U. et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015). References 18 and 19 provided the first structural insight into unexpected aspects of single-stranded nucleic acid ligand binding by TLR8 and TLR9, respectively. TLRs have proven notoriously difficult to express and crystallize.

    Article  CAS  PubMed  Google Scholar 

  20. Hornung, V. SnapShot: nucleic acid immune sensors, part 1. Immunity 41, 868–868. e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Hornung, V. et al. 5′-triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  22. Goubau, D. et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514, 372–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pichlmair, A. et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 83, 10761–10769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, J. et al. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013). References 26 and 27 report the seminal discovery of the cytosolic DNA receptor, as well as the small-molecule second messenger, that links to STING activation.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187, 2595–2601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015). This study highlights a previously unappreciated role for adaptor phosphorylation as an integral step in the activation of nucleic acid signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  32. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Huen, A. O. & Rook, A. H. Toll receptor agonist therapy of skin cancer and cutaneous T-cell lymphoma. Curr. Opin. Oncol. 26, 237–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kastenmüller, K. et al. Protective T cell immunity in mice following protein–TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J. Clin. Invest. 121, 1782–1796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilyinskii, P. O. et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 32, 2882–2895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kastenmuller, W., Kastenmüller, K., Kurts, C. & Seder, R. A. Dendritic cell-targeted vaccines — hope or hype? Nat. Rev. Immunol. 14, 705–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Field, A. K., Tytell, A. A., Lampson, G. P. & Hilleman, M. R. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc. Natl Acad. Sci. USA 58, 1004–1010 (1967).

    Article  CAS  PubMed  Google Scholar 

  39. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Caskey, M. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208, 2357–2366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ammi, R. et al. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol. Ther. 140, 120–131 (2014).

    Google Scholar 

  43. Strayer, D. R. et al. A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS ONE 7, e31334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Baguley, B. C. & Ching, L. M. DMXAA: an antivascular agent with multiple host responses. Int. J. Radiat. Oncol. Biol. Phys. 54, 1503–1511 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Lara, P. N. et al. Randomized Phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 2965–2971 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190, 5216–5225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao, P. et al. Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep. 8, 1668–1676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karaolis, D. K. R. et al. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol. 178, 2171–2181 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Dubensky, T. W., Kanne, D. B. & Leong, M. L. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther. Adv. Vaccines 1, 131–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao, P. et al. Structure–function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, X.-D. et al. Pivotal roles of cGAS–cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Scheiermann, J. & Klinman, D. M. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 32, 6377–6389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bedard, K. M. et al. Isoflavone agonists of IRF-3 dependent signaling have antiviral activity against RNA viruses. J. Virol. 86, 7334–7344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat. Struct. Mol. Biol. 17, 781–787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schlee, M. et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413–424 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goff, P. H. et al. Synthetic TLR4 and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained and broadly protective responses. J. Virol. 89, 3221–3335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Temizoz, B. et al. TLR9 and STING agonists synergistically induce innate and adaptive type II IFN. Eur. J. Immunol. 45, 1159–1169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marshak-Rothstein, A. & Rifkin, I. R. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007). A comprehensive review of the role of endosomal TLRs in SLE,with a particular focus on B cell biology.

    Article  CAS  PubMed  Google Scholar 

  63. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuznik, A. et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186, 4794–4804 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Sun, X. et al. Increased ribonuclease expression reduces inflammation and prolongs survival in TLR7 transgenic mice. J. Immunol. 190, 2536–2543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalunian, K. et al. Efficacy and safety of rontalizumab (anti-interferon α) in SLE subjects with restricted immunosuppressant use: results of a randomized, double-blind, placebo-controlled Phase 2 study. Arthritis Rheumatol. Abstr. Suppl. 64, S1111 (2012). A conference abstract showing that ISGs can be used for patient stratification in clinical studies.

    Google Scholar 

  67. Blomberg, S. et al. Presence of cutaneous interferon-α producing cells in patients with systemic lupus erythematosus. Lupus 10, 484–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon- α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berghofer, B. et al. TLR7 ligands induce higher IFN-α production in females. J. Immunol. 177, 2088–2096 (2006).

    Article  PubMed  Google Scholar 

  70. Laffont, S. et al. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 193, 5444–5452 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Lau, C. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan, R. W. et al. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc. Natl Acad. Sci. USA 111, E5302–E5311 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Annable, T. et al. Using poly I:C as an adjuvant does not induce or exacerbate models of systemic lupus erythematosus. Autoimmunity 48, 29–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Deane, J. A. et al. Control of TLR7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Savarese, E. et al. Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum. 58, 1107–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Demaria, O. et al. TLR8 deficiency leads to autoimmunity in mice. J. Clin. Invest. 120, 3651–3662 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, J. et al. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J. Biol. Chem. 281, 37427–37434 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Fukui, R. et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 35, 69–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Desnues, B. et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc. Natl Acad. Sci. USA 111, 1497–1502 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, H. J. et al. Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk. J. Exp. Med. 204, 1911–1922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fallarino, F. et al. IDO mediates TLR9-driven protection from experimental autoimmune diabetes. J. Immunol. 183, 6303–6312 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Wingender, G. et al. Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur. J. Immunol. 36, 12–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Moseman, E. A. et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. 173, 4433–4442 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Miles, K. et al. A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc. Natl Acad. Sci. USA 109, 887–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Barrat, F. J., Meeker, T., Chan, J. H., Guiducci, C. & Coffman, R. L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Zhu, F. G. et al. A novel antagonist of Toll-like receptors 7, 8 and 9 suppresses lupus disease-associated parameters in NZBW/F1 mice. Autoimmunity 46, 419–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van der Fits, L., van der Wel, L. I., Laman, J. D., Prens, E. P. & Verschuren, M. C. In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-α sensitivity is unaltered. J. Investig. Dermatol. 122, 51–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Ganguly, D. et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983–1994 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu, D. et al. Modifications incorporated in CpG motifs of oligodeoxynucleotides lead to antagonist activity of Toll-like receptors 7 and 9. J. Med. Chem. 52, 5108–5114 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Suarez-Farinas, M. et al. Treatment of psoriasis patients with IMO-3100 shows improvement in gene expression patterns of meta-analysis derived-3 transcriptome and IL-17 pathway. Arthritis Rheumatol. Abstr. Suppl. 65, S495 (2013).

    Google Scholar 

  99. Langley, R. G. et al. Secukinumab in plaque psoriasis — results of two Phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Suarez-Farinas, M. et al. Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation. PLoS ONE 8, e84634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Balak, D. M. W. et al. Results from a randomized, double-blind, placebo-controlled, monotherapy trial of IMO-8400 demonstrate clinical proof-of-concept for Toll-like receptor 7. 8 and 9 antagonism in psoriasis (poster). 73rd Annual Meeting of the American Academy of Dermatology 1805 (2015).

  103. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, J. Q., Jeelall, Y. S., Beutler, B., Horikawa, K. & Goodnow, C. C. Consequences of the recurrent MYD88L265P somatic mutation for B cell tolerance. J. Exp. Med. 211, 413–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Crow, Y. J. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Funabiki, M. et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40, 199–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Crampton, S. P., Deane, J. A., Feigenbaum, L. & Bolland, S. Ifih1 gene dose effect reveals MDA5- mediated chronic type I IFN gene signature, viral resistance, and accelerated autoimmunity. J. Immunol. 188, 1451–1459 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad, Sci. USA 112, E710–E717 (2015). A provocative study showing that STING deficiency in mice unexpectedly exacerbates lupus-like disease.

    Article  CAS  Google Scholar 

  112. Huang, L. et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J. Immunol. 191, 3509–3513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kranzusch, P. J., Lee, A. S.-Y., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lamphier, M. et al. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol. Pharmacol. 85, 429–440 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Baum, R. et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J. Immunol. 194, 873–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Yu, P. et al. Nucleic acid-sensing toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37, 867–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Ciancanelli, M. J. et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Alsina, L. et al. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat. Immunol. 15, 1134–1142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zeng, M. et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346, 1486–1492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kuemmerle-Deschner, J. B. et al. Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). Arthritis Res. Ther. 13, R34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ruperto, N. et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2396–2406 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015). References 9, 123 and 127 uncover physiological circumstances in which mitochondrial DNA is released as a cell-intrinsic danger signal leading to cGAS-mediated immune activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Khamashta, M. et al. Safety and efficacy of sifalimumab, an anti IFN-α monoclonal antibody, in a Phase 2b study of moderate to severe systemic lupus erythematosus (SLE). Arthritis Rheum. 66, 3531 (2014).

    Google Scholar 

  129. Morehouse, C. et al. Target modulation of a type I interferon (IFN) gene signature with sifalimumab or anifrolumab in systemic lupus erythematosis (SLE) patients in two open label Phase 2 Japanese trials. Arthritis Rheumatol. Abstr. Suppl. 66, S313–S314 (2014).

    Google Scholar 

  130. Lauwerys, B. R. et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65, 447–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Zimmer, R., Scherbarth, H. R., Rillo, O. L., Gomez-Reino, J. J. & Muller, S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled Phase IIb clinical trial. Ann. Rheum. Dis. 72, 1830–1835 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Reilly, S. M. et al. An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat. Med. 19, 313–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chaudhary, D., Robinson, S. & Romero, D. L. Recent advances in the discovery of small molecule inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK4) as a therapeutic target for inflammation and oncology disorders. J. Med. Chem. 58, 96–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Balasubramanian, W. R. et al. Novel IRAK-4 inhibitors exhibit highly potent anti-proliferative activity in DLBCL cell lines with activating MYD88 L265P mutation. AACR Annual Meeting Abstract 3646 (2015).

  135. Vajda, E. G., Niecestro, R., Zhi, L. & Marschke, K. B. IRAK4 inhibitors display synergistic activity when combined with BTK or PI3K inhibitors in B cell lymphomas. AACR Annual Meeting Abstract 785 (2015).

  136. Laska, M. J. et al. Polymorphisms within Toll-like receptors are associated with systemic lupus erythematosus in a cohort of Danish females. Rheumatol. 53, 48–55 (2014).

    Article  CAS  Google Scholar 

  137. Assmann, T. S., Brondani Lde, A., Bauer, A. C., Canani, L. H. & Crispim, D. Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus. Eur. J. Endocrinol. 170, 519–527 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Garcia-Ortiz, H. et al. Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann. Rheum. Dis. 69, 1861–1865 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Kawasaki, A. et al. TLR7 single-nucleotide polymorphisms in the 3′ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res. Ther. 13, R41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Piotrowski, P., Lianeri, M., Wudarski, M., Olesinska, M. & Jagodzinski, P. P. Contribution of toll-like receptor 9 gene single-nucleotide polymorphism to systemic lupus erythematosus. Rheumatol. Int. 33, 1121–1125 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Cen, H. et al. Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity 46, 455–462 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Tansley, S. L. et al. Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study. Arthritis Res. Ther. 16, R138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shigemoto, T. et al. Identification of loss of function mutations in human genes encoding RIG-I and mda5: implications for resistance to type I diabetes. J. Biol. Chem. 284, 13348–13354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A167A, 296–312 (2015). A comprehensive review on AGS and its underlying genetic causes.

  146. Ravenscroft, J. C., Suri, M., Rice, G. I., Szynkiewicz, M. & Crow, Y. J. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am. J. Med. Genet. A 155A, 235–237 (2011).

    Article  PubMed  Google Scholar 

  147. Richards, A. et al. C-terminal truncations in human 3′–5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 39, 1068–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Rutsch, F. et al. A specific IFIH1 gain-of-function mutation causes Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 275–282 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Belot, A. et al. Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr. Rheumatol. Online J. 12, 44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Schuberth-Wagner, C. et al. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′O-methylated self RNA. Immunity 43, 41–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Mannion N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Reports 9, 1482–1494 (2015).

    Article  CAS  Google Scholar 

  156. Liddicoat B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science http://dx.doi.org/10.1126/science.aac7049 (2015).

Download references

Acknowledgements

The authors thank E. Bartok, J. Deane, M. Hasan, P. Lötscher, D. Patel, A. Marshak-Rothstein and A. Weber for discussion and helpful suggestions relating to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Junt.

Ethics declarations

Competing interests

T.J. is an employee of Novartis Pharma, AG. W.B. declares no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Glossary

Pathophenotype

A disease subtype within a complex disease that is distinguished by certain clinical symptoms. Complex diseases such as systemic lupus erythematosus contain multiple pathophenotypes. The key challenge of molecular pathology is to match pathophenotypes to the activation of specific pathogenic pathways.

Antinuclear antibodies

(ANAs). Autoantibodies against double-stranded DNA or RNA-containing antigens (for example, Sjögren syndrome-related antigen A (SS-A; also known as Ro), SS-B (also known as La), Sm (spliceosomal) and small nuclear ribonucleoprotein 70 kDa (snRNP70)). Their presence in patient sera is a diagnostic hallmark of autoimmune diseases such as Sjögren syndrome and systemic lupus erythematosus. One diagnostic test for ANAs relies on specific staining pattern of cell nuclei with patient sera by immunofluorescence, hence the name.

Biomarkers

Measurable parameters that are reflective of specific biological processes in living organisms. Diagnostic biomarkers point to disease type or severity and may support patient stratification or selection. Pharmacodynamic biomarkers are measured in clinical trials to indicate pharmacological responses to compounds.

T cell-independent type 2 antigens

Polyvalent antigens that activate B cells by efficient crosslinking of the B cell receptor (BCR), without the need of T help. They differ from T cell-independent type 1 antigens, which are polyclonal B cell stimulants that activate B cells independently of BCR ligation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junt, T., Barchet, W. Translating nucleic acid-sensing pathways into therapies. Nat Rev Immunol 15, 529–544 (2015). https://doi.org/10.1038/nri3875

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3875

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research