Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Type 2 cytokines: mechanisms and therapeutic strategies

Key Points

  • Although the type 2 cytokine response has many important host-protective functions, dysregulated, chronic or hyperreactive type 2 immunity can contribute to the development of disease. Type 2 cytokines are crucial to the pathogenesis of many allergic and fibrotic diseases, they suppress the development of protective type 1 immunity to a wide range of viral, bacterial and protozoan pathogens, and they can promote tumorigenesis and tumour cell growth.

  • As dysregulated type 2 immune responses are major drivers of disease, the mechanisms that control the intensity, maintenance and resolution of type 2 immunity are probably important regulators of disease progression. Several endogenous regulatory mechanisms work collaboratively to prevent or to limit the pathological consequences of sustained type 2 immunity.

  • Inflammatory monocytes and tissues macrophages have emerged as important regulators of established type 2 immune responses. Therapeutic strategies that disrupt the recruitment, the expansion or maintenance of crucial myeloid cell populations could emerge as novel therapeutic approaches for a variety of type 2-driven diseases.

  • Interferon-γ- and interleukin-4 (IL-4)- and/or IL-13-activated macrophages antagonize type 2 inflammation and fibrosis by competing with activated myofibroblasts that require the metabolites l-arginine and l-proline for collagen synthesis. IL-4- and/or IL-13-primed macrophages expressing arginase 1 also inhibit IL-13-driven fibrosis by suppressing the proliferation and the expansion of the CD4+ T helper 2 (TH2) cell population.

  • The IL-13 decoy receptor (IL-13Rα2), the immunosuppressive cytokine IL-10 and type 1 cytokines collaboratively suppress the development of type 2 cytokine-driven disease and immunity.

  • Therapeutic strategies targeting type 2 cytokine signalling pathways, eosinophil development and recruitment, epithelial cell-derived alarmins, prostaglandins and regulatory T (TReg) cell activity are at different stages of development for type 2-driven disease.

Abstract

Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The yin and yang of type 2 immunity.
Figure 2: Monocytes and macrophages contribute to the regulation of type 2-driven repair and fibrosis.
Figure 3: Collaboration between interleukin-10, the IL-13 decoy receptor and type 1 immunity in the suppression of type 2 immunity.
Figure 4: Novel targeted therapies for type 2-driven disease.

Similar content being viewed by others

References

  1. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Urban, J. F. Jr et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anthony, R. M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Med. 12, 955–960 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Cliffe, L. J. et al. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 1463–1465 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hasnain, S. Z. et al. Muc5ac: a critical component mediating the rejection of enteric nematodes. J. Exp. Med. 208, 893–900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, A. et al. Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. J. Immunol. 171, 948–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lubberts, E. et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J. Clin. Invest. 105, 1697–1710 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaw, M. K. et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J. Exp. Med. 185, 1711–1714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. West, G. A., Matsuura, T., Levine, A. D., Klein, J. S. & Fiocchi, C. Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology 110, 1683–1695 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Gause, W. C., Wynn, T. A. & Allen, J. E. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Rev. Immunol. 13, 607–614 (2013).

    Article  CAS  Google Scholar 

  14. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nature Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  Google Scholar 

  15. Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palm, N. W., Rosenstein, R. K. & Medzhitov, R. Allergic host defences. Nature 484, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Erb, K. J., Holloway, J. W., Sobeck, A., Moll, H. & Le Gros, G. Infection of mice with Mycobacterium bovis-Bacillus Calmette–Guerin (BCG) suppresses allergen-induced airway eosinophilia. J. Exp. Med. 187, 561–569 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potian, J. A. et al. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 208, 1863–1874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Osborne, L. C. et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345, 578–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bronte, V. et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170, 270–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777–2790 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nature Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  Google Scholar 

  29. Allen, J. E. & Wynn, T. A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Allen, J. E. & Maizels, R. M. Diversity and dialogue in immunity to helminths. Nature Rev. Immunol. 11, 375–388 (2011).

    Article  CAS  Google Scholar 

  32. Pulendran, B. & Artis, D. New paradigms in type 2 immunity. Science 337, 431–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walker, J. A., Barlow, J. L. & McKenzie, A. N. Innate lymphoid cells — how did we miss them? Nature Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  Google Scholar 

  34. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Paul, W. E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nature Rev. Immunol. 10, 225–235 (2010).

    Article  CAS  Google Scholar 

  36. Manetti, R. et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (TH1)-specific immune responses and inhibits the development of IL-4-producing TH cells. J. Exp. Med. 177, 1199–1204 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, D. et al. Selective expression and functions of interleukin 18 receptor on T helper (TH) type 1 but not TH2 cells. J. Exp. Med. 188, 1485–1492 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Szabo, S. J., Jacobson, N. G., Dighe, A. S., Gubler, U. & Murphy, K. M. Developmental commitment to the TH2 lineage by extinction of IL-12 signaling. Immunity 2, 665–675 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Kodama, T. et al. IL-18 deficiency selectively enhances allergen-induced eosinophilia in mice. J. Allergy Clin. Immunol. 105, 45–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Afonso, L. C. et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263, 235–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Else, K. J., Finkelman, F. D., Maliszewski, C. R. & Grencis, R. K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Finkelman, F. D. et al. Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J. Exp. Med. 179, 1563–1572 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Maizels, R. M., Pearce, E. J., Artis, D., Yazdanbakhsh, M. & Wynn, T. A. Regulation of pathogenesis and immunity in helminth infections. J. Exp. Med. 206, 2059–2066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Badalyan, V. et al. TNF-α/IL-17 synergy inhibits IL-13 bioactivity via IL-13Rα2 induction. J. Allergy Clin. Immunol. 134, 975–978. e5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaviratne, M. et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-β independent. J. Immunol. 173, 4020–4029 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Wynn, T. A., Eltoum, I., Oswald, I. P., Cheever, A. W. & Sher, A. Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J. Exp. Med. 179, 1551–1561 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Chu, R. S., Targoni, O. S., Krieg, A. M., Lehmann, P. V. & Harding, C. V. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (TH1) immunity. J. Exp. Med. 186, 1623–1631 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chiaramonte, M. G., Hesse, M., Cheever, A. W. & Wynn, T. A. CpG oligonucleotides can prophylactically immunize against TH2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism. J. Immunol. 164, 973–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Wynn, T. A. et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594–596 (1995). This study shows how vaccine-induced immune deviation could be used to prevent the development of type 2 cytokine-dependent disease.

    Article  CAS  PubMed  Google Scholar 

  51. Gavett, S. H. et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and TH2 cytokine expression in mice. J. Exp. Med. 182, 1527–1536 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Hessel, E. M. et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting TH2 cell activation and IgE-mediated cytokine induction. J. Exp. Med. 202, 1563–1573 (2005). This study identifies the key mechanisms by which immunostimulatory oligonucleotides suppress type 2 immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Campbell, J. D. et al. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax 69, 565–573 (2014).

    Article  PubMed  Google Scholar 

  54. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weiss, J. M. et al. Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J. Exp. Med. 207, 2455–2467 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (TH2) responses and require obligatory cytokine signals for induction of TH1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lambrecht, B. N. & Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity 31, 412–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Yoshimoto, T. et al. Basophils contribute to TH2–IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nature Immunol. 10, 706–712 (2009).

    Article  CAS  Google Scholar 

  63. Sokol, C. L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nature Immunol. 10, 713–720 (2009).

    Article  CAS  Google Scholar 

  64. Perrigoue, J. G. et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nature Immunol. 10, 697–705 (2009).

    Article  CAS  Google Scholar 

  65. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  Google Scholar 

  66. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013). These authors identify conventional DCs as the principal subset inducing T H 2 cell-mediated immunity in the lymph nodes, whereas monocyte-derived DCs control allergic inflammation in the lungs.

    Article  CAS  PubMed  Google Scholar 

  67. Borthwick, L.A. et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol. http://dx.doi.org/10.1038/mi.2015.34 (2015).

  68. Chensue, S. W. et al. Role of monocyte chemoattractant protein-1 (MCP-1) in TH1 (mycobacterial) and TH2 (schistosomal) antigen-induced granuloma formation: relationship to local inflammation, TH cell expression, and IL-12 production. J. Immunol. 157, 4602–4608 (1996).

    CAS  PubMed  Google Scholar 

  69. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Julia, V. et al. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 16, 271–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  Google Scholar 

  74. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Google Scholar 

  75. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  76. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  Google Scholar 

  77. Murray, P. J. The JAK–STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nature Immunol. 12, 231–238 (2011).

    Article  CAS  Google Scholar 

  79. Satoh, T. et al. The Jmjd3–Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunol. 11, 936–944 (2010).

    Article  CAS  Google Scholar 

  80. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Hoffmann, K. F., Cheever, A. W. & Wynn, T. A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Rutschman, R. et al. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166, 2173–2177 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Obermajer, N. et al. Induction and stability of human TH17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J. Exp. Med. 210, 1433–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M. & Zanovello, P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24, 302–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Hesse, M., Cheever, A. W., Jankovic, D. & Wynn, T. A. NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the TH1-inducing adjuvant, IL-12, in a TH2 model of granulomatous disease. Am. J. Pathol. 157, 945–955 (2000). This study suggests a crucial role for IFNγ-primed NOS2-expressing macrophages in the suppression of type 2-mediated inflammation and fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiong, Y., Karupiah, G., Hogan, S. P., Foster, P. S. & Ramsay, A. J. Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. J. Immunol. 162, 445–452 (1999).

    CAS  PubMed  Google Scholar 

  87. El Kasmi, K. C. et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature Immunol. 9, 1399–1406 (2008).

    Article  CAS  Google Scholar 

  88. Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Vannella, K. M. et al. Incomplete deletion of IL-4Rα by LysMCre reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis. PLoS Pathog. 10, e1004372 (2014). This study suggests that distinct populations of IL-13-primed arginase 1-expressing macrophages are responsible for the suppression of inflammation and fibrosis in chronic schistosomiasis, which is a disease associated with dominant type 2 cytokine expression.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pesce, J. T. et al. Arginase-1-expressing macrophages suppress TH2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Albina, J. E., Mills, C. D., Henry, W. L. Jr & Caldwell, M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J. Immunol. 144, 3877–3880 (1990).

    CAS  PubMed  Google Scholar 

  92. Sandler, N. G., Mentink-Kane, M. M., Cheever, A. W. & Wynn, T. A. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for TH1 and TH2 responses in tissue repair. J. Immunol. 171, 3655–3667 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Witte, M. B. & Barbul, A. Arginine physiology and its implication for wound healing. Wound Repair Regen. 11, 419–423 (2003).

    Article  PubMed  Google Scholar 

  94. Thompson, R. W. et al. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity. PLoS Pathog. 4, e1000023 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Barron, L. et al. Role of arginase 1 from myeloid cells in TH2-dominated lung inflammation. PLoS ONE 8, e61961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nieuwenhuizen, N. E. et al. Allergic airway disease is unaffected by the absence of IL-4Rα-dependent alternatively activated macrophages. J. Allergy Clin. Immunol. 130, 743–750. e8 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Zea, A. H. et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Egawa, M. et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38, 570–580 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Nair, M. G. et al. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. J. Exp. Med. 206, 937–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pesce, J. T. et al. Retnla (relmα/fizz1) suppresses helminth-induced TH2-type immunity. PLoS Pathog. 5, e1000393 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by TH1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  102. Sher, A., Fiorentino, D., Caspar, P., Pearce, E. & Mosmann, T. Production of IL-10 by CD4+ T lymphocytes correlates with down-regulation of TH1 cytokine synthesis in helminth infection. J. Immunol. 147, 2713–2716 (1991).

    CAS  PubMed  Google Scholar 

  103. Wynn, T. A. et al. IL-10 regulates liver pathology in acute murine Schistosomiasis mansoni but is not required for immune down-modulation of chronic disease. J. Immunol. 160, 4473–4480 (1998).

    CAS  PubMed  Google Scholar 

  104. Schopf, L. R., Hoffmann, K. F., Cheever, A. W., Urban, J. F. Jr & Wynn, T. A. IL-10 is critical for host resistance and survival during gastrointestinal helminth infection. J. Immunol. 168, 2383–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Del Prete, G. et al. Human IL-10 is produced by both type 1 helper (TH1) and type 2 helper (TH2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J. Immunol. 150, 353–360 (1993).

    CAS  PubMed  Google Scholar 

  106. Grunig, G. et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med. 185, 1089–1099 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001).

    Article  CAS  Google Scholar 

  108. Akdis, M. et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 199, 1567–1575 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meiler, F. et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 205, 2887–2898 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kearley, J., Barker, J. E., Robinson, D. S. & Lloyd, C. M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med. 202, 1539–1547 (2005). This study shows that T Reg cells can suppress allergen-driven T H 2 cell responses by an IL-10-dependent mechanism but that IL-10 production by the T Reg cells themselves was not strictly required.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nature Immunol. 8, 1380–1389 (2007).

    Article  CAS  Google Scholar 

  112. Stumhofer, J. S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nature Immunol. 8, 1363–1371 (2007).

    Article  CAS  Google Scholar 

  113. Miyazaki, Y. et al. Exacerbation of experimental allergic asthma by augmented TH2 responses in WSX-1-deficient mice. J. Immunol. 175, 2401–2407 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Artis, D. et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J. Immunol. 173, 5626–5634 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Taylor, M. D. et al. Early recruitment of natural CD4+ Foxp3+ TReg cells by infective larvae determines the outcome of filarial infection. Eur. J. Immunol. 39, 192–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Hesse, M. et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol. 172, 3157–3166 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Mangan, N. E. et al. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J. Immunol. 173, 6346–6356 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Wilson, M. S. et al. Helminth-induced CD19+CD23hi B cells modulate experimental allergic and autoimmune inflammation. Eur. J. Immunol. 40, 1682–1696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schreiber, T. H. et al. Therapeutic TReg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J. Clin. Invest. 120, 3629–3640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barrat, F. J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Fallon, P. G. & Mangan, N. E. Suppression of TH2-type allergic reactions by helminth infection. Nature Rev. Immunol. 7, 220–230 (2007). This is an excellent and comprehensive review describing how helminth infections and helminth antigens might be used in the treatment of T H 2-type allergic disorders.

    Article  CAS  Google Scholar 

  123. Harnett, W. & Harnett, M. M. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nature Rev. Immunol. 10, 278–284 (2010).

    Article  CAS  Google Scholar 

  124. Bashir, M. E., Andersen, P., Fuss, I. J., Shi, H. N. & Nagler-Anderson, C. An enteric helminth infection protects against an allergic response to dietary antigen. J. Immunol. 169, 3284–3292 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Wilson, M. S. et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J. Exp. Med. 202, 1199–1212 (2005). This was a groundbreaking study showing that helminth-induced T Reg cells could suppress allergic airway inflammation in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schnoeller, C. et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J. Immunol. 180, 4265–4272 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. O'Shea, J. J. & Murray, P. J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Seki, Y. et al. SOCS-3 regulates onset and maintenance of TH2-mediated allergic responses. Nature Med. 9, 1047–1054 (2003). This study shows that SOCS3 regulates not only the initiation but also the maintenance of T H 2 cell-mediated allergic disease, which suggests that SOCS3 might represent a therapeutic target for a range of T H 2 cell-driven diseases.

    Article  CAS  PubMed  Google Scholar 

  129. Dickensheets, H. et al. Suppressor of cytokine signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling. Genes Immun. 8, 21–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Lee, C. et al. Suppressor of cytokine signalling 1 (SOCS1) is a physiological regulator of the asthma response. Clin. Exp. Allergy 39, 897–907 (2009). This study identifies SOCS1 is an imporant inhibitor of allergic airway inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim, T. H. et al. Expression of SOCS1 and SOCS3 is altered in the nasal mucosa of patients with mild and moderate/severe persistent allergic rhinitis. Int. Arch. Allergy Immunol. 158, 387–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Kinjyo, I. et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-β 1. J. Exp. Med. 203, 1021–1031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ozaki, A., Seki, Y., Fukushima, A. & Kubo, M. The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS)3 and SOCS5 in a murine model. J. Immunol. 175, 5489–5497 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Zafra, M. P. et al. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS ONE 9, e91996 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Kelly-Welch, A. E., Hanson, E. M., Boothby, M. R. & Keegan, A. D. Interleukin-4 and interleukin-13 signaling connections maps. Science 300, 1527–1528 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Munitz, A., Brandt, E. B., Mingler, M., Finkelman, F. D. & Rothenberg, M. E. Distinct roles for IL-13 and IL-4 via IL-13 receptor α1 and the type II IL-4 receptor in asthma pathogenesis. Proc. Natl Acad. Sci. USA 105, 7240–7245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. LaPorte, S. L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wood, N. et al. Enhanced interleukin (IL)-13 responses in mice lacking IL-13 receptor α 2. J. Exp. Med. 197, 703–709 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lupardus, P. J., Birnbaum, M. E. & Garcia, K. C. Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Rα2. Structure 18, 332–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mentink-Kane, M. M. & Wynn, T. A. Opposing roles for IL-13 and IL-13 receptor α2 in health and disease. Immunol. Rev. 202, 191–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Chiaramonte, M. G. et al. Regulation and function of the interleukin 13 receptor α2 during a T helper cell type 2-dominant immune response. J. Exp. Med. 197, 687–701 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mentink-Kane, M. M. et al. IL-13 receptor α2 down-modulates granulomatous inflammation and prolongs host survival in schistosomiasis. Proc. Natl Acad. Sci. USA 101, 586–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Graham, B. B. et al. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am. J. Pathol. 177, 1549–1561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morimoto, M. et al. Functional importance of regional differences in localized gene expression of receptors for IL-13 in murine gut. J. Immunol. 176, 491–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Morimoto, M. et al. IL-13 receptor α2 regulates the immune and functional response to Nippostrongylus brasiliensis infection. J. Immunol. 183, 1934–1939 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Yasunaga, S. et al. The negative-feedback regulation of the IL-13 signal by the IL-13 receptor α2 chain in bronchial epithelial cells. Cytokine 24, 293–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, Y. et al. Lysophosphatidic acid induces interleukin-13 (IL-13) receptor α2 expression and inhibits IL-13 signaling in primary human bronchial epithelial cells. J. Biol. Chem. 282, 10172–10179 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Andrews, A. L. et al. IL-13 receptor α2: a regulator of IL-13 and IL-4 signal transduction in primary human fibroblasts. J. Allergy Clin. Immunol. 118, 858–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Wilson, M. S. et al. IL-13Rα2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. J. Clin. Invest. 117, 2941–2951 (2007). This study shows that IL-13Rα2 and IL-10 are both required for the suppression of airway inflammation, airway hyperresponsiveness and fibrosis in models of allergic asthma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zheng, T. et al. IL-13 receptor α2 selectively inhibits IL-13-induced responses in the murine lung. J. Immunol. 180, 522–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. van Scott, M. R. et al. IL-10 reduces TH2 cytokine production and eosinophilia but augments airway reactivity in allergic mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L667–L674 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Hadeiba, H. & Locksley, R. M. Lung CD25 CD4 regulatory T cells suppress type 2 immune responses but not bronchial hyperreactivity. J. Immunol. 170, 5502–5510 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Makela, M. J. et al. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization. Proc. Natl Acad. Sci. USA 97, 6007–6012 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wilson, M. S. et al. Colitis and intestinal inflammation in IL10−/− mice results from IL-13Rα2-mediated attenuation of IL-13 activity. Gastroenterology 140, 254–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Herbert, D. R. et al. Intestinal epithelial cell secretion of RELM-β protects against gastrointestinal worm infection. J. Exp. Med. 206, 2947–2957 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mentink-Kane, M. M. et al. Accelerated and progressive and lethal liver fibrosis in mice that lack interleukin (IL)-10, IL-12p40, and IL-13Rα2. Gastroenterology 141, 2200–2209 (2011). This study shows that the progression of IL-13-dependent liver cirrhosis is slowed substantially by the combined inhibitory actions of IL-10, IL-12 and IL-13Rα2.

    Article  CAS  PubMed  Google Scholar 

  157. Fallon, P. G., Richardson, E. J., McKenzie, G. J. & McKenzie, A. N. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J. Immunol. 164, 2585–2591 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Ramalingam, T. R. et al. Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor α1 chain. Nature Immunol. 9, 25–33 (2008).

    Article  CAS  Google Scholar 

  159. Agrawal, S. & Townley, R. G. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Expert Opin. Biol. Ther. 14, 165–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Zagury, D., Burny, A. & Gallo, R. C. Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines. Proc. Natl Acad. Sci. USA 98, 8024–8029 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Richard, M., Grencis, R. K., Humphreys, N. E., Renauld, J. C. & Van Snick, J. Anti-IL-9 vaccination prevents worm expulsion and blood eosinophilia in Trichuris muris-infected mice. Proc. Natl Acad. Sci. USA 97, 767–772 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Oh, C. K., Geba, G. P. & Molfino, N. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur. Respir. Rev. 19, 46–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nature Rev. Immunol. 13, 9–22 (2013). This is a comprehensive review examining the development, recruitment and activation of eosinophils in homeostasis and in a range of disease states.

    Article  CAS  Google Scholar 

  166. Licona-Limon, P., Kim, L. K., Palm, N. W. & Flavell, R. A. TH2, allergy and group 2 innate lymphoid cells. Nature Immunol. 14, 536–542 (2013). This is an excellent review examining the regulatory roles of TSLP, IL-25, IL-33 and ILC2s in the type 2 response to helminths and allergens and in the maintenance of homeostasis.

    Article  CAS  Google Scholar 

  167. Wenzel, S. E. Eosinophils in asthma — closing the loop or opening the door? N. Engl. J. Med. 360, 1026–1028 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Reiman, R. M. et al. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect. Immun. 74, 1471–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Swartz, J. M. et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108, 2420–2427 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and TH2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  172. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Comeau, M. R. & Ziegler, S. F. The influence of TSLP on the allergic response. Mucosal Immunol. 3, 138–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Willart, M. A. et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM–CSF and IL-33. J. Exp. Med. 209, 1505–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jang, S., Morris, S. & Lukacs, N. W. TSLP promotes induction of TH2 differentiation but is not necessary during established allergen-induced pulmonary disease. PLoS ONE 8, e56433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ramalingam, T. R. et al. Regulation of helminth-induced TH2 responses by thymic stromal lymphopoietin. J. Immunol. 182, 6452–6459 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl Acad. Sci. USA 107, 18581–18586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Massacand, J. C. et al. Helminth products bypass the need for TSLP in TH2 immune responses by directly modulating dendritic cell function. Proc. Natl Acad. Sci. USA 106, 13968–13973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gauvreau, G. M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370, 2102–2110 (2014). This is an exciting clinical study showing that antibodies specific for TSLP reduced allergen-induced airway responses and inflammation in patients with allergy who were challenged with allergen.

    Article  PubMed  CAS  Google Scholar 

  180. Islam, S. A. & Luster, A. D. T cell homing to epithelial barriers in allergic disease. Nature Med. 18, 705–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Larche, M., Akdis, C. A. & Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nature Rev. Immunol. 6, 761–771 (2006).

    Article  CAS  Google Scholar 

  182. Busse, W. W. et al. Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am. J. Respir. Crit. Care Med. 178, 1002–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Claar, D., Hartert, T. V. & Peebles, R. S. Jr. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev. Respir. Med. 9, 55–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Wammes, L. J., Mpairwe, H., Elliott, A. M. & Yazdanbakhsh, M. Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. Lancet Infect. Dis. 14, 1150–1162 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Fahy, J. V. Type 2 inflammation in asthma — present in most, absent in many. Nature Rev. Immunol. 15, 57–65 (2015).

    Article  CAS  Google Scholar 

  186. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is supported by the intramural research programme of the National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Wynn.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

Crohn disease

A type of chronic inflammatory bowel disease that can affect any part of the gastrointestinal tract from the mouth to the anus. Crohn disease is caused by a combination of environmental, nutritional, immunological and bacterial factors in genetically susceptible individuals.

Adaptive thermogenesis

The thermic effect of factors such as cold, fear, stress and several drugs that can increase the rate of energy expenditure above normal levels. In individuals with obesity, adaptive thermogenesis impedes weight loss, compromises the maintenance of weight loss and creates the ideal metabolic response to support rapid weight regain.

Eosinophilic oesophagitis

An allergic inflammatory condition of the oesophagus that involves eosinophils and that can lead to oesophageal narrowing, impaired swallowing, food impaction, dysphagia, vomiting and weight loss.

Chronic schistosomiasis

A chronic disease caused by parasitic worms of the genus Schistosoma that in some infected individuals leads to the development of severe interleukin-13-driven eosinophilic inflammation and hepatic fibrosis.

Immunostimulatory CpG sequences

Short single-stranded synthetic DNA molecules that contain a cytosine triphosphate deoxynucleotide (C) followed by a guanine triphosphate deoxynucleotide (G); they have potent immunostimulatory activity when recognized by the pattern recognition receptor Toll-like receptor 9.

Clodronate liposomes

Liposome-encapsulated clodronate is a commonly used tool that is used to deplete phagocytic cells such as macrophages in vivo. At a certain intracellular concentration, clodronate induces macrophage apoptosis.

Cd11b–DTR mice

Cd11b-transgenic mice that have a diphtheria toxin-inducible system that transiently depletes macrophages in various tissues. Intraperitoneal injection of diphtheria toxin ablates CD11b+ monocytes and/or macrophages.

Polarized type 2 immune responses

Immune responses that are dominated by the production of interleukin-4 (IL-4), IL-5, IL-9 and/or IL-13.

Cre recombinase

An enzyme that facilitates site-specific recombination events and is commonly used in genome modification strategies.

Arg1lox/deltaLysM–Cre mice

Mice that lack expression of arginase 1 (Arg1) specifically in monocytes and macrophages (which express lysozyme M (LysM)).

Arg1lox/deltaTie2–Cre mice

Mice that lack expression of arginase 1 (Arg1) specifically in endothelial cells and most haematopoietic cells, which express the receptor tyrosine kinase promoter/enhancer (which is encoded by Tie2; also known as Tek).

Portal hypertension

An increase in the pressure within the portal vein (the vein that carries blood from the digestive organs to the liver). The increase in pressure is caused by a blockage in the blood flow through the liver, which is commonly associated with cirrhosis or scarring of the liver.

Ascites

Abdominal fluid that accumulates as a result of high pressure in the blood vessels of the liver, often a result of chronic liver injury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wynn, T. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 15, 271–282 (2015). https://doi.org/10.1038/nri3831

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing