Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Follicular dendritic cells: dynamic antigen libraries

Key Points

  • Follicular dendritic cells (FDCs) are non-haematopoietic cells that are of stromal origin. They are integrated into the continuous stromal network within lymphoid organs.

  • FDCs can acquire antigen through multiple pathways; small antigens flow through conduits directly to the FDCs, whereas larger antigens are transported to FDCs by B cells in a complement-dependent manner.

  • Acquired antigens are retained in their native form by FDCs for long periods of time. The antigens are protected from damage by storage in non-degradative endosomal vesicles that periodically cycle to the cell surface.

  • Retention and concentration of antigen by FDCs is important for an efficient germinal centre reaction, especially under conditions of limited antigen availability.

  • Toll-like receptor signalling in FDCs may affect their functions, such as their retention and cycling of antigen.

  • HIV might hijack the cycling mechanism of FDCs in order to evade the immune system, which makes FDCs unique as a non-infected cell that is also an infectious reservoir of the virus.

Abstract

Follicular dendritic cells (FDCs) are essential for high-affinity antibody production and for the development of B cell memory. Historically, FDCs have been characterized as 'accessory' cells that passively support germinal centre (GC) responses. However, recent observations suggest that FDCs actively shape humoral immunity. In this Review, we discuss recent findings concerning the antigen acquisition and retention functions of FDCs, and relevant implications for protective immunity. Furthermore, we describe the roles of FDCs within GCs in secondary lymphoid organs and discuss FDC development within this dynamic environment. Finally, we discuss how a better understanding of FDCs could facilitate the design of next-generation vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic overview of lymph node architecture and FDC morphology.
Figure 2: Timeline of major discoveries in the FDC field*
Figure 3: The germinal centre reaction.
Figure 4: Antigen acquisition by FDCs.
Figure 5: FDCs function as HIV reservoirs.

Similar content being viewed by others

References

  1. Tew, J. G., Kosco, M. H., Burton, G. F. & Szakal, A. K. Follicular dendritic cells as accessory cells. Immunol. Rev. 117, 185–211 (1990).

    CAS  PubMed  Google Scholar 

  2. Krautler, N. et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150, 194–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alimzhanov, M. B. et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc. Natl Acad. Sci. USA 94, 9302–9307 (1997).

    CAS  PubMed  Google Scholar 

  4. Endres, R. et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin-β receptor by radioresistant stromal cells and of lymphotoxin-β and tumor necrosis factor by B cells. J. Exp. Med. 189, 159–168 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pasparakis, M., Alexopoulou, L., Douni, E. & Kollias, G. Tumour necrosis factors in immune regulation: everything that's interesting is...new! Cytokine Growth Factor Rev. 7, 223–229 (1996).

    CAS  PubMed  Google Scholar 

  6. Nossal, G., Ada, G. & Austin, C. Antigens in immunity. X. Induction of immunologic tolerance to Salmonella adelaide flagellin. J. Immunol. 95, 665–672 (1965).

    CAS  PubMed  Google Scholar 

  7. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    CAS  PubMed  Google Scholar 

  8. Wang, X. et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J. Exp. Med. 208, 2497–2510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garin, A. et al. Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation. Immunity 33, 84–95 (2010).

    CAS  PubMed  Google Scholar 

  10. Wu, Y. et al. IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int. Immunol. 21, 745–756 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mandel, T., Phipps, R., Abbot, A. & Tew, J. The follicular dendritic cell: long term antigen retention during immunity. Immunol. Rev. 53, 29–59 (1980).

    CAS  PubMed  Google Scholar 

  12. Kelsoe, G. Life and death in germinal centers (redux). Immunity 4, 107–111 (1996).

    CAS  PubMed  Google Scholar 

  13. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  14. Allen, C. D. & Cyster, J. G. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 20, 14–25 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer, M. B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    CAS  PubMed  Google Scholar 

  16. Matsumoto, M. et al. Distinct roles of lymphotoxin-α and the type I tumor necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J. Exp. Med. 186, 1997–2004 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Heesters, B. A. et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38, 1164–1175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra, D., Fletcher, A. L. & Turley, S. J. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol. Rev. 251, 160–176 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Chan, J. K., Fletcher, C. D., Nayler, S. J. & Cooper, K. Follicular dendritic cell sarcoma. Clinicopathologic analysis of 17 cases suggesting a malignant potential higher than currently recognized. Cancer 79, 294–313 (1997).

    CAS  PubMed  Google Scholar 

  20. Castagnaro, L. et al. Nkx2-5+islet1+ mesenchymal precursors generate distinct spleen stromal cell subsets and participate in restoring stromal network integrity. Immunity 38, 782–791 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. van de Pavert, S. A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nature Immunol. 10, 1193–1199 (2009).

    CAS  Google Scholar 

  22. Vondenhoff, M. F. et al. LTβR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J. Immunol. 182, 5439–5445 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cupedo, T. et al. Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13. J. Immunol. 173, 4889–4896 (2004).

    CAS  PubMed  Google Scholar 

  24. Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    CAS  PubMed  Google Scholar 

  25. Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26, 643–654 (2007).

    CAS  PubMed  Google Scholar 

  26. Schmutz, S. et al. Cutting edge: IL-7 regulates the peripheral pool of adult RORγ+ lymphoid tissue inducer cells. J. Immunol. 183, 2217–2221 (2009).

    CAS  PubMed  Google Scholar 

  27. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer's patches. Immunity 17, 823–833 (2002).

    CAS  PubMed  Google Scholar 

  28. Honda, K. et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J. Exp. Med. 193, 621–630 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Katakai, T. et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 181, 6189–6200 (2008).

    CAS  PubMed  Google Scholar 

  30. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bajénoff, M. & Germain, R. B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells. Blood 114, 4989–4997 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    CAS  PubMed  Google Scholar 

  34. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vondenhoff, M. F. et al. Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. J. Leukoc. Biol. 84, 152–161 (2008).

    CAS  PubMed  Google Scholar 

  36. Bajénoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    PubMed  PubMed Central  Google Scholar 

  37. Boulianne, B. et al. AID-expressing germinal center B cells cluster normally within lymph node follicles in the absence of FDC-M1+ CD35+ follicular dendritic cells but dissipate prematurely. J. Immunol. 191, 4521–4530 (2013).

    CAS  PubMed  Google Scholar 

  38. El Shikh, M. & Pitzalis, C. Follicular dendritic cells in health and disease. Frontiers Immunol. 3, 292 (2012).

    Google Scholar 

  39. Kosco-Vilbois, M. Are follicular dendritic cells really good for nothing? Nature Rev. Immunol. 3, 764–769 (2003).

    CAS  Google Scholar 

  40. Tew, J. & Mandel, T. Prolonged antigen half-life in the lymphoid follicles of specifically immunized mice. Immunology 37, 69–76 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    CAS  Google Scholar 

  42. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nature Immunol. 8, 992–1000 (2007).

    CAS  Google Scholar 

  43. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    CAS  PubMed  Google Scholar 

  44. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    CAS  PubMed  Google Scholar 

  45. Phan, T. G., Green, J. A., Gray, E. E., Xu, Y. & Cyster, J. G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nature Immunol. 10, 786–793 (2009).

    CAS  Google Scholar 

  46. Gonzalez, S. et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunol. 11, 427–434 (2010).

    CAS  Google Scholar 

  47. Bajic, G., Yatime, L., Sim, R. B., Vorup-Jensen, T. & Andersen, G. R. Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc. Natl Acad. Sci. USA 110, 16426–16431 (2013).

    CAS  PubMed  Google Scholar 

  48. van den Elsen, J. M. & Isenman, D. E. A crystal structure of the complex between human complement receptor 2 and its ligand C3d. Science 332, 608–611 (2011).

    CAS  PubMed  Google Scholar 

  49. Szakonyi, G. et al. Structure of complement receptor 2 in complex with its C3d ligand. Science 292, 1725–1728 (2001).

    CAS  PubMed  Google Scholar 

  50. He, C. et al. Stimulation of regional lymphatic and blood flow by epicutaneous oxazolone. J. Appl. Physiol. 93, 966–973 (2002).

    CAS  PubMed  Google Scholar 

  51. Matsumoto, N., Koike, K., Yamada, S. & Staub, N. C. Caudal mediastinal node lymph flow in sheep after histamine or endotoxin infusions. Am. J. Physiol. 258, H24–H28 (1990).

    CAS  PubMed  Google Scholar 

  52. Swartz, M. A., Hubbell, J. A. & Reddy, S. T. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin. Immunol. 20, 147–156 (2008).

    CAS  PubMed  Google Scholar 

  53. Tomei, A. A., Siegert, S., Britschgi, M. R., Luther, S. A. & Swartz, M. A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183, 4273–4283 (2009).

    CAS  PubMed  Google Scholar 

  54. Brand, C. U., Hunziker, T. & Braathen, L. R. Isolation of human skin-derived lymph: flow and output of cells following sodium lauryl sulphate-induced contact dermatitis. Arch. Dermatol. Res. 284, 123–126 (1992).

    CAS  PubMed  Google Scholar 

  55. Harrell, M. I., Iritani, B. M. & Ruddell, A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol. 170, 774–786 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. Mullins, R. J. & Hudgens, R. W. Increased skin lymph protein clearance after a 6-h arterial bradykinin infusion. Am. J. Physiol. 253, H1462–H1469 (1987).

    CAS  PubMed  Google Scholar 

  57. Staberg, B., Klemp, P., Aasted, M., Worm, A. M. & Lund, P. Lymphatic albumin clearance from psoriatic skin. J. Am. Acad. Dermatol. 9, 857–861 (1983).

    CAS  PubMed  Google Scholar 

  58. Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007).

    CAS  PubMed  Google Scholar 

  59. Mueller, S. N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl Acad. Sci. USA 104, 15430–15435 (2007).

    CAS  PubMed  Google Scholar 

  60. Klein, F. et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492, 118–122 (2012).

    CAS  PubMed  Google Scholar 

  61. Victora, G. D. & Mesin, L. Clonal and cellular dynamics in germinal centers. Curr. Opin. Immunol. 28C, 90–96 (2014).

    Google Scholar 

  62. El Shikh, M. E., El Sayed, R. M., Wu, Y., Szakal, A. K. & Tew, J. G. TLR4 on follicular dendritic cells: an activation pathway that promotes accessory activity. J. Immunol. 179, 4444–4450 (2007).

    CAS  PubMed  Google Scholar 

  63. Suzuki, K. et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 33, 71–83 (2010).

    CAS  PubMed  Google Scholar 

  64. Kasturi, S. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aguzzi, A., Nuvolone, M. & Zhu, C. The immunobiology of prion diseases. Nature Rev. Immunol. 13, 888–902 (2013).

    CAS  Google Scholar 

  66. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    CAS  PubMed  Google Scholar 

  67. Pan, K. M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993).

    CAS  PubMed  Google Scholar 

  68. Kitamoto, T., Muramoto, T., Mohri, S., Doh-Ura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol. 65, 6292–6295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Blattler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389, 69–73 (1997).

    CAS  PubMed  Google Scholar 

  70. Kaeser, P. S., Klein, M. A., Schwarz, P. & Aguzzi, A. Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoietic cells. J. Virol. 75, 7097–7106 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hilton, D. A., Fathers, E., Edwards, P., Ironside, J. W. & Zajicek, J. Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt–Jakob disease. Lancet 352, 703–704 (1998).

    CAS  PubMed  Google Scholar 

  72. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    CAS  PubMed  Google Scholar 

  73. Pattison, I. H. & Millson, G. C. Further observations on the experimental production of scrapie in goats and sheep. J. Comp. Pathol. 70, 182–193 (1960).

    CAS  PubMed  Google Scholar 

  74. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    CAS  PubMed  Google Scholar 

  75. Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003).

    CAS  PubMed  Google Scholar 

  76. Parmentier, H. K. et al. HIV-1 infection and virus production in follicular dendritic cells in lymph nodes. A case report, with analysis of isolated follicular dendritic cells. Am. J. Pathol. 137, 247–251 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Banki, Z. et al. Factor I-mediated processing of complement fragments on HIV immune complexes targets HIV to CR2-expressing B cells and facilitates B cell-mediated transmission of opsonized HIV to T cells. J. Immunol. 177, 3469–3476 (2006).

    CAS  PubMed  Google Scholar 

  78. Lund, O. et al. Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection. J. Virol. 69, 2393–2400 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nielsen, S. D. et al. Complement-mediated enhancement of HIV-1 infection in peripheral blood mononuclear cells. Scand. J. Infect. Dis. 29, 447–452 (1997).

    CAS  PubMed  Google Scholar 

  80. Delibrias, C. C., Kazatchkine, M. D. & Fischer, E. Evidence for the role of CR1 (CD35), in addition to CR2 (CD21), in facilitating infection of human T cells with opsonized HIV. Scand. J. Immunol. 38, 183–189 (1993).

    CAS  PubMed  Google Scholar 

  81. Smith-Franklin, B. A. et al. Follicular dendritic cells and the persistence of HIV infectivity: the role of antibodies and Fcγ receptors. J. Immunol. 168, 2408–2414 (2002).

    CAS  PubMed  Google Scholar 

  82. Burton, G. F., Keele, B. F., Estes, J. D., Thacker, T. C. & Gartner, S. Follicular dendritic cell contributions to HIV pathogenesis. Semin. Immunol. 14, 275–284 (2002).

    CAS  PubMed  Google Scholar 

  83. Kaplan, M., Coons, A. & Deane, H. Localization of antigen in tissue cells; cellular distribution of pneumococcal polysaccharides types II and III in the mouse. J. Exp. Med. 91, 15–30 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mellors, R. & Brzosko, W. Studies in molecular pathology. I. Localization and pathogenic role of heterologous immune complexes. J. Exp. Med. 115, 891–902 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. White, R. Factors affecting the antibody response. Br. Med. Bull. 19, 207–213 (1963).

    CAS  PubMed  Google Scholar 

  86. Nossal, G., Abbot, A. & Mitchell, J. Antigens in immunity. XIV. Electron microscopic radioautographic studies of antigen capture in the lymph node medulla. J. Exp. Med. 127, 263–276 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hanna, M. & Szakal, A. Localization of 125I-labeled antigen in germinal centers of mouse spleen: histologic and ultrastructural autoradiographic studies of the secondary immune reaction. J. Immunol. 101, 949–962 (1968).

    PubMed  Google Scholar 

  88. Papamichail, M. et al. Complement dependence of localisation of aggregated IgG in germinal centres. Scand. J. Immunol. 4, 343–347 (1975).

    CAS  PubMed  Google Scholar 

  89. Chen, L., Adams, J. & Steinman, R. Anatomy of germinal centers in mouse spleen, with special reference to “follicular dendritic cells”. J. Cell Biol. 77, 148–164 (1978).

    CAS  PubMed  Google Scholar 

  90. Chen, L., Frank, A., Adams, J. & Steinman, R. Distribution of horseradish peroxidase (HRP)-anti-HRP immune complexes in mouse spleen with special reference to follicular dendritic cells. J. Cell Biol. 79, 184–199 (1978).

    CAS  PubMed  Google Scholar 

  91. Kinet-Denoël, C., Heinen, E., Radoux, D. & Simar, L. Follicular dendritic cells in lymph nodes after x-irradiation. Int. J. Radi. Biol. Relat. Stud. Phys. Chem. Med. 42, 121–130 (1982).

    Google Scholar 

  92. Monda, L., Warnke, R. & Rosai, J. A primary lymph node malignancy with features suggestive of dendritic reticulum cell differentiation. A report of 4 cases. Am. J. Pathol. 122, 562–572 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lebman, D. & Coffman, R. The effects of IL-4 and IL-5 on the IgA response by murine Peyer's patch B cell subpopulations. J. Immunol. 141, 2050–2056 (1988).

    CAS  PubMed  Google Scholar 

  94. Schuurman, H., Krone, W., Broekhuizen, R. & Goudsmit, J. Expression of RNA and antigens of human immunodeficiency virus type-1 (HIV-1) in lymph nodes from HIV-1 infected individuals. Am. J. Pathol. 133, 516–524 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kosco, M., Pflugfelder, E. & Gray, D. Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro. J. Immunol. 148, 2331–2339 (1992).

    CAS  PubMed  Google Scholar 

  96. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    CAS  PubMed  Google Scholar 

  97. Croix, D. A. et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 183, 1857–1864 (1996).

    CAS  PubMed  Google Scholar 

  98. Kröncke, R., Loppnow, H., Flad, H. & Gerdes, J. Human follicular dendritic cells and vascular cells produce interleukin-7: a potential role for interleukin-7 in the germinal center reaction. Eur. J. Immunol. 26, 2541–2544 (1996).

    PubMed  Google Scholar 

  99. Rennert, P., James, D., Mackay, F., Browning, J. & Hochman, P. Lymph node genesis is induced by signaling through the lymphotoxin-β receptor. Immunity 9, 71–79 (1998).

    CAS  PubMed  Google Scholar 

  100. Yoon, S.-O., Zhang, X., Berner, P., Blom, B. & Choi, Y. Notch ligands expressed by follicular dendritic cells protect germinal center B cells from apoptosis. J. Immunol. 183, 352–358 (2009).

    CAS  PubMed  Google Scholar 

  101. Thiel, J. et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J. Allergy Clin. Immunol. 129, 801–810 (2012).

    CAS  PubMed  Google Scholar 

  102. Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. & Littman, D. R. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–144 (2002).

    CAS  PubMed  Google Scholar 

  103. Perreau, M., Pantaleo, G. & Kremer, E. J. Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J. Exp. Med. 205, 2717–2725 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Perreau, M. et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210, 143–156 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Burton, G. F. et al. Follicular dendritic cells (FDC) in retroviral infection: host/pathogen perspectives. Immunol. Rev. 156, 185–197 (1997).

    CAS  PubMed  Google Scholar 

  106. Smith, B. A. et al. Persistence of infectious HIV on follicular dendritic cells. J. Immunol. 166, 690–696 (2001).

    CAS  PubMed  Google Scholar 

  107. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Rev. Immunol. 6, 205–217 (2006).

    CAS  Google Scholar 

  108. Victoratos, P. & Kollias, G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 30, 130–142 (2009).

    CAS  PubMed  Google Scholar 

  109. Yau, I. W. et al. Censoring of self-reactive B cells by follicular dendritic cell-displayed self-antigen. J. Immunol. 191, 1082–1090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kranich, J. et al. Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J. Exp. Med. 205, 1293–1302 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the M.C.C. laboratory for suggestions and valuable insights. They acknowledge S. F. Gonzalez for the use of his electron microscopy image and T. Vorup-Jensen for valuable insights into the CR3–C3d–CR2 complex. M.C.C. is supported by the US National Institutes of Health (RO1 AI039246 and R37 AI054636).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Carroll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Germinal centre

(GC). A structure that develops in the B cell follicles of a lymph node after exposure to, or immunization with, a T cell-dependent antigen. GCs facilitate the development of long-lived plasma cells — that produce high-affinity antibodies — and memory B cells, and they can be divided into a dark zone and a follicular dendritic cell (FDC)-rich light zone.

Somatic hypermutation

(SHM). B cells diversify their B cell receptor by mutating the variable regions of immunoglobulin genes, thus creating a more specific repertoire. This occurs within the germinal centre and requires follicular dendritic cell-mediated help.

Affinity maturation

The process by which B cells produce antibodies with increased affinity for antigen during the course of an immune response. Follicular dendritic cells repeatedly present the same antigens to B cells and this leads to the production of antibodies with successively greater affinities.

Immune complexes

Structures that are formed by the binding of an antibody to a soluble antigen and subsequent complement deposition.

Mural cells

These include vascular smooth muscle cells and pericytes, which are contractile cells that wrap around the endothelial cells of venules and capillaries. Such cells are responsive to vascular endothelial growth factor (VEGF).

Lymphoid tissue organizer cells

These include mesenchymal or endothelial stromal cells that are required for the formation of lymphoid tissues and are seeded throughout the body. Only when induced by retinoid acid do they secrete CXC-chemokine ligand 13 (CXCL13), which initiates cell clustering.

Lymphoid tissue inducer cells

(LTi cells). These cells are required for the development of conventional lymph nodes and isolated lymphoid follicles but not the spleen. They are attracted by CXC-chemokine ligand 13, mature and then interact with stromal cells through lymphotoxin α1β2, which leads to further lymph node growth.

Conduit

A filamentous collagen bundle that allows for the transport of low molecular weight (70 kDa, 5.5 nm) particles from the subcapsular sinus into the B cell follicle and the medulla.

SCS macrophages

Macrophages that line the subcapsular sinus (SCS) of the lymph node and sample antigens. They are capable of transporting antigens from their apical to their basolateral surface, which allows for antigen transport into the B cell follicle.

Non-degradative endosomal compartments

Vesicular bodies that do not proceed to the late endosomal compartment but are instead cycled back to the surface without a drop in pH. The most well-known function of these compartments is in the recycling of the transferrin receptor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heesters, B., Myers, R. & Carroll, M. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14, 495–504 (2014). https://doi.org/10.1038/nri3689

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing