Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

New roles for cyclin-dependent kinases in T cell biology: linking cell division and differentiation

Abstract

The proliferation of a few antigen-reactive lymphocytes into a large population of effector cells is a fundamental property of adaptive immunity. The cell division that fuels this process is driven by signals from antigen, co-stimulatory molecules and growth factor receptors, and is controlled by the cyclin-dependent kinase (CDK) cascade. In this Opinion article, we discuss how the CDK cascade provides one potential link between cell division and differentiation through the phosphorylation of immunologically relevant transcription factors, and how components of this pathway might ultimately participate in the decision between tolerance and immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of T cell development and differentiation by members of the CDK family.
Figure 2: Models to link cell cycle progression with T cell differentiation.
Figure 3: Regulation of the regulatory T cell programme by CDK2 and p27.

Similar content being viewed by others

References

  1. Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sourdive, D. J. et al. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J. Exp. Med. 188, 71–82 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jenkins, M. K. & Moon, J. J. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 188, 4135–4140 (2012).

    CAS  PubMed  Google Scholar 

  4. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    CAS  PubMed  Google Scholar 

  5. Wells, A., Gudmundsdottir, H. & Turka, L. Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J. Clin. Invest. 100, 3173–3183 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gudmundsdottir, H., Wells, A. & Turka, L. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).

    CAS  PubMed  Google Scholar 

  8. Lim, S. & Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079–3093 (2013).

    CAS  PubMed  Google Scholar 

  9. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    CAS  PubMed  Google Scholar 

  10. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    CAS  PubMed  Google Scholar 

  11. Diril, M. K. et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl Acad. Sci. USA 109, 3826–3831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Santamaría, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007).

    PubMed  Google Scholar 

  13. Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet. 35, 25–31 (2003).

    CAS  PubMed  Google Scholar 

  14. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol. 13, 1775–1785 (2003).

    CAS  PubMed  Google Scholar 

  15. Tsutsui, T. et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol. 19, 7011–7019 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet. 22, 44–52 (1999).

    CAS  PubMed  Google Scholar 

  17. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004).

    CAS  PubMed  Google Scholar 

  18. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    CAS  PubMed  Google Scholar 

  19. Hu, M. G. et al. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res. 69, 810–818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, M. G. et al. CDK6 kinase activity is required for thymocyte development. Blood 117, 6120–6131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rowell, E. & Wells, A. The role of cyclin-dependent kinases in T-cell development, proliferation, and function. Crit. Rev. Immunol. 26, 189–212 (2006).

    CAS  PubMed  Google Scholar 

  22. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    CAS  PubMed  Google Scholar 

  23. Berthet, C. et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev. Cell 10, 563–573 (2006).

    CAS  PubMed  Google Scholar 

  24. Barrière, C. et al. Mice thrive without Cdk4 and Cdk2. Mol. Oncol. 1, 72–83 (2007).

    PubMed  PubMed Central  Google Scholar 

  25. Hasbold, J., Lyons, A. B., Kehry, M. R. & Hodgkin, P. D. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol. 28, 1040–1051 (1998).

    CAS  PubMed  Google Scholar 

  26. Gett, A. & Hodgkin, P. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl Acad. Sci. USA 95, 9488–9493 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gudmundsdottir, H. & Turka, L. A closer look at homeostatic proliferation of CD4+ T cells: costimulatory requirements and role in memory formation. J. Immunol. 167, 3699–3707 (2001).

    CAS  PubMed  Google Scholar 

  28. Bird, J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  29. Wells, A., Walsh, M., Sankaran, D. & Turka, L. T cell effector function and anergy avoidance are quantitatively linked to cell division. J. Immunol. 165, 2432–2443 (2000).

    CAS  PubMed  Google Scholar 

  30. Schwartz, R. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    CAS  PubMed  Google Scholar 

  31. Powell, J., Lerner, C. & Schwartz, R. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  32. Vanasek, T., Khoruts, A., Zell, T. & Mueller, D. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J. Immunol. 167, 5636–5644 (2001).

    CAS  PubMed  Google Scholar 

  33. Jackson, S., DeLoose, A. & Gilbert, K. Induction of anergy in Th1 cells associated with increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. J. Immunol. 166, 952–958 (2001).

    CAS  PubMed  Google Scholar 

  34. Wells, A. Cyclin-dependent kinases: molecular switches controlling anergy and potential therapeutic targets for tolerance. Semin. Immunol. 19, 173–179 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wells, A. D. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J. Immunol. 182, 7331–7341 (2009).

    CAS  PubMed  Google Scholar 

  37. Chang, J. T. et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34, 492–504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    CAS  PubMed  Google Scholar 

  39. Ciocca, M. L., Barnett, B. E., Burkhardt, J. K., Chang, J. T. & Reiner, S. L. Cutting edge: Asymmetric memory T cell division in response to rechallenge. J. Immunol. 188, 4145–4148 (2012).

    CAS  PubMed  Google Scholar 

  40. Grimmler, M. et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128, 269–280 (2007).

    CAS  PubMed  Google Scholar 

  41. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    CAS  PubMed  Google Scholar 

  42. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    CAS  PubMed  Google Scholar 

  43. Alevizopoulos, K., Catarin, B., Vlach, J. & Amati, B. A novel function of adenovirus E1A is required to overcome growth arrest by the CDK2 inhibitor p27Kip1. EMBO J. 17, 5987–5997 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Appleman, L. J., Berezovskaya, A., Grass, I. & Boussiotis, V. A. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J. Immunol. 164, 144–151 (2000).

    CAS  PubMed  Google Scholar 

  46. Boussiotis, V. et al. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nature Med. 6, 290–297 (2000).

    CAS  PubMed  Google Scholar 

  47. Rowell, E., Wang, L., Hancock, W. & Wells, A. The cyclin-dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade. J. Immunol. 177, 5169–5176 (2006).

    CAS  PubMed  Google Scholar 

  48. Rowell, E., Walsh, M. & Wells, A. Opposing roles for the cyclin-dependent kinase inhibitor p27kip1 in the control of CD4+ T cell proliferation and effector function. J. Immunol. 174, 3359–3368 (2005).

    CAS  PubMed  Google Scholar 

  49. Li, L., Iwamoto, Y., Berezovskaya, A. & Boussiotis, V. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nature Immunol. 7, 1157–1165 (2006).

    CAS  Google Scholar 

  50. Besson, A., Gurian-West, M., Schmidt, A., Hall, A. & Roberts, J. M. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 18, 862–876 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chunder, N., Wang, L., Chen, C., Hancock, W. W. & Wells, A. D. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J. Immunol. 189, 5659–5666 (2012).

    CAS  PubMed  Google Scholar 

  52. Dhavan, R. & Tsai, L. H. A decade of CDK5. Nature Rev. Mol. Cell. Biol. 2, 749–759 (2001).

    CAS  Google Scholar 

  53. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173–11178 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pareek, T. K. et al. Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 207, 2507–2519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Berthet, C. et al. Hematopoiesis and thymic apoptosis are not affected by the loss of Cdk2. Mol. Cell. Biol. 27, 5079–5089 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwartz, R. H. A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356 (1990).

    CAS  PubMed  Google Scholar 

  57. Jatzek, A. et al. p27Kip1 negatively regulates the magnitude and persistence of CD4 T cell memory. J. Immunol. 189, 5119–5128 (2012).

    CAS  PubMed  Google Scholar 

  58. Singh, A. et al. Regulation of memory CD8 T-cell differentiation by cyclin-dependent kinase inhibitor p27Kip1. Mol. Cell. Biol. 30, 5145–5159 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nature Immunol. 13, 405–411 (2012).

    CAS  Google Scholar 

  60. Arias, C. F. et al. p21CIP1/WAF1 controls proliferation of activated/memory T cells and affects homeostasis and memory T cell responses. J. Immunol. 178, 2296–2306 (2007).

    CAS  PubMed  Google Scholar 

  61. Jatzek, A., Marie Tejera, M., Plisch, E. H., Fero, M. L. & Suresh, M. T-cell intrinsic and extrinsic mechanisms of p27Kip1 in the regulation of CD8 T-cell memory. Immunol. Cell Biol. 91, 120–129 (2013).

    CAS  PubMed  Google Scholar 

  62. Kim, M. V., Ouyang, W., Liao, W., Zhang, M. Q. & Li, M. O. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39, 286–297 (2013).

    CAS  PubMed  Google Scholar 

  63. Tejera, M. M., Kim, E. H., Sullivan, J. A., Plisch, E. H. & Suresh, M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J. Immunol. 191, 187–199 (2013).

    CAS  PubMed  Google Scholar 

  64. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  65. Yuan, Z. et al. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 319, 1665–1668 (2008).

    CAS  PubMed  Google Scholar 

  66. Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nature Rev. Immunol. 12, 649–661 (2012).

    CAS  Google Scholar 

  67. Lawson, B. R. et al. Deficiency of the cyclin kinase inhibitor p21(WAF-1/CIP-1) promotes apoptosis of activated/memory T cells and inhibits spontaneous systemic autoimmunity. J. Exp. Med. 199, 547–557 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Balomenos, D. et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nature Med. 6, 171–176 (2000).

    CAS  PubMed  Google Scholar 

  69. Santiago-Raber, M. L. et al. Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J. Immunol. 167, 4067–4074 (2001).

    CAS  PubMed  Google Scholar 

  70. Selma Dagtas, A. & Gilbert, K. M. p21Cip1 up-regulated during histone deacetylase inhibitor-induced CD4+ T-cell anergy selectively associates with mitogen-activated protein kinases. Immunology 129, 589–599 (2010).

    PubMed  Google Scholar 

  71. Iglesias, M. et al. p27Kip1 inhibits systemic autoimmunity through the control of Treg cell activity and differentiation. Arthritis Rheum. 65, 343–354 (2013).

    CAS  PubMed  Google Scholar 

  72. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    CAS  PubMed  Google Scholar 

  73. Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. & Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105–1111 (2009).

    CAS  PubMed  Google Scholar 

  74. Killebrew, J. R. et al. A self-reactive TCR drives the development of Foxp3+ regulatory T cells that prevent autoimmune disease. J. Immunol. 187, 861–869 (2011).

    CAS  PubMed  Google Scholar 

  75. Morawski, P. A., Mehra, P., Chen, C., Bhatti, T. & Wells, A. D. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J. Biol. Chem. 288, 24494–24502 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maddika, S. et al. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J. Cell. Sci. 121, 979–988 (2008).

    CAS  PubMed  Google Scholar 

  77. Patterson, S. J. et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537 (2011).

    CAS  PubMed  Google Scholar 

  78. König, S. et al. First insight into the kinome of human regulatory T cells. PLoS ONE 7, e40896 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Li, L. et al. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 106, 3068–3073 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oberg, H.-H. et al. Differential but direct abolishment of human regulatory T cell suppressive capacity by various TLR2 ligands. J. Immunol. 184, 4733–4740 (2010).

    CAS  PubMed  Google Scholar 

  81. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Krystof, V. & Uldrijan, S. Cyclin-dependent kinase inhibitors as anticancer drugs. Curr. Drug Targets 11, 291–302 (2010).

    CAS  PubMed  Google Scholar 

  83. Gallorini, M., Cataldi, A. & di Giacomo, V. Cyclin-dependent kinase modulators and cancer therapy. BioDrugs 26, 377–391 (2012).

    CAS  PubMed  Google Scholar 

  84. Yoshida, H. et al. CDK inhibitors suppress Th17 and promote iTreg differentiation, and ameliorate experimental autoimmune encephalomyelitis in mice. Biochem. Biophys. Res. Commun. 435, 378–384 (2013).

    CAS  PubMed  Google Scholar 

  85. Li, L., Wang, H., Kim, J. S., Pihan, G. & Boussiotis, V. The cyclin dependent kinase inhibitor (R)-roscovitine prevents alloreactive T cell clonal expansion and protects against acute GvHD. Cell Cycle 8, 1794–1802 (2009).

    CAS  PubMed  Google Scholar 

  86. Zoja, C. et al. Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis Rheum. 56, 1629–1637 (2007).

    CAS  PubMed  Google Scholar 

  87. Pezzotta, A. et al. Effect of seliciclib (CYC202, R-roscovitine) on lymphocyte alloreactivity and acute kidney allograft rejection in rat. Transplantation 85, 1476–1482 (2008).

    CAS  PubMed  Google Scholar 

  88. Wesierska-Gadek, J. & Krystof, V. Selective cyclin-dependent kinase inhibitors discriminating between cell cycle and transcriptional kinases: future reality or utopia? Ann. NY Acad. Sci. 1171, 228–241 (2009).

    CAS  PubMed  Google Scholar 

  89. Whittaker, S. R. et al. The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell Cycle 6, 3114–3131 (2007).

    CAS  PubMed  Google Scholar 

  90. Jorda, R. et al. Pyrazolo[4,3-d]pyrimidine bioisostere of roscovitine: evaluation of a novel selective inhibitor of cyclin-dependent kinases with antiproliferative activity. J. Med. Chem. 54, 2980–2993 (2011).

    CAS  PubMed  Google Scholar 

  91. Legraverend, M. & Grierson, D. S. The purines: potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem. 14, 3987–4006 (2006).

    CAS  PubMed  Google Scholar 

  92. Blagosklonny, M. & Pardee, A. The restriction point of the cell cycle. Cell Cycle 1, 103–110 (2002).

    CAS  PubMed  Google Scholar 

  93. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Contreras, A. et al. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 23, 8626–8636 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, S. et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nature Cell Biol. 12, 1108–1114 (2010).

    CAS  PubMed  Google Scholar 

  96. Lavoie, G. & St-Pierre, Y. Phosphorylation of human DNMT1: implication of cyclin-dependent kinases. Biochem. Biophys. Res. Commun. 409, 187–192 (2011).

    CAS  PubMed  Google Scholar 

  97. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    CAS  PubMed  Google Scholar 

  98. Cheung, Z. H. & Ip, N. Y. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol. 22, 169–175 (2012).

    CAS  PubMed  Google Scholar 

  99. Matsuura, I. et al. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430, 226–231 (2004).

    CAS  PubMed  Google Scholar 

  100. Vanden Bush, T. J. & Bishop, G. A. CDK-mediated regulation of cell functions via c-Jun phosphorylation and AP-1 activation. PLoS ONE 6, e19468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Banchio, C., Schang, L. M. & Vance, D. E. Phosphorylation of Sp1 by cyclin-dependent kinase 2 modulates the role of Sp1 in CTP:phosphocholine cytidylyltransferase-α regulation during the S phase of the cell cycle. J. Biol. Chem. 279, 40220–40226 (2004).

    CAS  PubMed  Google Scholar 

  102. Perkins, N. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997).

    CAS  PubMed  Google Scholar 

  103. Chen, E. & Li, C. Association of Cdk2/cyclin E and NF-κB complexes at G1/S phase. Biochem. Biophys. Res. Commun. 249, 728–734 (1998).

    CAS  PubMed  Google Scholar 

  104. Guo, H. & Friedman, A. D. Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3. J. Biol. Chem. 286, 208–215 (2011).

    CAS  PubMed  Google Scholar 

  105. Levy, D. E. & Darnell, J. E. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell. Biol. 3, 651–662 (2002).

    CAS  Google Scholar 

  106. Bancerek, J. et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38, 250–262 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tzivion, G., Dobson, M. & Ramakrishnan, G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 1813, 1938–1945 (2011).

    CAS  PubMed  Google Scholar 

  110. Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    CAS  PubMed  Google Scholar 

  111. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.D.W. is a member of the Biesecker Pediatric Liver Disease Center at The Children's Hospital of Philadelphia, Pennsylvania, USA. Work relevant to this article by A.D.W. was supported by US National Institutes of Health grants AI054643 and AI070807, and work by P.A.M. was supported by a Goldie Simon Preceptorship Award sponsored by the Lupus Foundation of America Philadelphia Tri-State Chapter, Pennsylvania, USA, and the Pennsylvania Department of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Wells.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Anergy

The functional non-responsiveness of antigen-specific T cells.

Autoimmune accelerator locus

(Yaa). A duplication of a 4 Mbp segment of the Y chromosome of inbred BXSB mice containing 19 genes, including Tlr7, that leads to the spontaneous development of systemic autoimmunity similar to systemic lupus erythematosus.

Bioisosteres

In drug design, compounds that have highly similar properties and structures, but varied efficacy, activity or toxicity as a result of minor chemical substitutions.

DN3 to DN4 transition

The transition during thymocyte maturation during which CD4CD8 double-negative cells undergo T cell receptor-β (TCRβ) rearrangement and downregulate CD25 expression.

G0 phase

(Resting phase). The period of the cell cycle during which the cell is quiescent that lasts until the initiation of cell division.

G1 phase

(Gap1 phase). The phase of the cell cycle during which the cell grows and carries out large amounts of protein synthesis.

Interphase

The period representing the majority of the cell cycle including G1, S and G2 phases, during which the cell increases in size and replicates its DNA.

Interphase CDK

Cyclin-dependent kinases that are active during the interphase (G1, S and G2 phases) of the cell cycle, including CDK2, CDK4 and CDK6.

Nuclear mediator complex

The complex of multiple nuclear proteins that is required to enhance RNA polymerase II-mediated gene transcription.

RNA polymerase II

(RNA Pol II). A 550 kDa, 12-subunit eukaryotic enzyme that is required for the initiation of DNA transcription.

S phase

(Synthesis phase). The phase of the cell cycle during which the genomic DNA is replicated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, A., Morawski, P. New roles for cyclin-dependent kinases in T cell biology: linking cell division and differentiation. Nat Rev Immunol 14, 261–270 (2014). https://doi.org/10.1038/nri3625

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing