Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling pathways that control vertebrate haematopoietic stem cell specification

Key Points

  • Understanding the native signalling processes that specify haematopoietic stem cells (HSCs) during development could inform attempts to replicate these events in vitro for the purposes of transplantation and regenerative therapies. Recent advances have identified several proximal signalling events that regulate HSC specification.

  • Earlier embryonic patterning events sequentially generate the most immediate precursor to HSCs: endothelial cells found in the ventral floor of the primitive dorsal aorta. Understanding these more distal signalling events, including the specification of ventrolateral trunk mesoderm, is key to understanding the sequential signalling environment experienced by precursor cells and the establishment of their competence to receive the final combined HSC specification signals.

  • Notch signalling has a pivotal role in both specification of the dorsal aorta, by distinguishing it from the posterior cardinal vein, and generation of haemogenic endothelium, by controlling initiation of the definitive haematopoietic programme. It is presently unclear whether these Notch-regulated events have the same or discrete requirements.

  • Proximal signalling inputs from bone morphogenetic proteins, WNT–β-catenin, nitric oxide, prostaglandins and catecholamines are required for HSC programme initiation or early maintenance.

  • Somite gene expression is required for HSC specification. A Sonic hedgehog–Vegfa signalling axis controls Notch receptor expression in endothelial aortic cells. Also connected to this pathway are inputs from Etv6 and the calcitonin receptor-like receptor. Additional somite patterning by a Wnt16–Dlc and Wnt16–Dld signalling axis results in yet-to-be identified proximal inputs.

Abstract

Haematopoietic stem cells (HSCs) are tissue-specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Clinically, HSCs form the foundation of transplantation-based therapies for leukaemias and congenital blood disorders. Researchers have long been interested in understanding the normal signalling mechanisms that specify HSCs in the embryo, in part because recapitulating these requirements in vitro might provide a means to generate immune-compatible HSCs for transplantation. Recent embryological work has demonstrated the existence of previously unknown signalling requirements. Moreover, it is now clear that gene expression in the nearby somite is integrally involved in regulating the transition of the embryonic endothelium to a haemogenic fate. Here, we review current knowledge of the intraembryonic signals required for the specification of HSCs in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haematopoietic stem cells.
Figure 2: Early signalling regulating HSC specification.
Figure 3: Processes regulated by Sonic hedgehog.
Figure 4: Processes regulated by Notch.
Figure 5: Model for indirect Notch-mediated haematopoietic stem cell specification in zebrafish.

Similar content being viewed by others

References

  1. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bordignon, C. Stem-cell therapies for blood diseases. Nature 441, 1100–1102 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Irion, S., Nostro, M. C., Kattman, S. J. & Keller, G. M. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb. Symp. Quant. Biol. 73, 101–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Kaufman, D. S. Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 114, 3513–3523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peters, A. et al. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. Int. J. Dev. Biol. 54, 965–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ciau-Uitz, A., Walmsley, M. & Patient, R. Distinct origins of adult and embryonic blood in Xenopus. Cell 102, 787–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Maeno, M., Tochinai, S. & Katagiri, C. Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid–triploid or interspecific chimeras. Dev. Biol. 110, 503–508 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Maeno, M., Todate, A. & Katagiri, C. The localization of precursor cells for larval and adult hemopoietic cells of Xenopus laevis in two regions of embryos. Dev. Growth Differ. 27, 137–148 (1985).

    Article  Google Scholar 

  10. Turpen, J. B., Knudson, C. M. & Hoefen, P. S. The early ontogeny of hematopoietic cells studied by grafting cytogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. Dev. Biol. 85, 99–112 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Turpen, J. B., Kelley, C. M., Mead, P. E. & Zon, L. I. Bipotential primitive–definitive hematopoietic progenitors in the vertebrate embryo. Immunity 7, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Yokota, T. et al. Tracing the first waves of lymphopoiesis in mice. Development 133, 2041–2051 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Bertrand, J. Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl Acad. Sci. USA 102, 134–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid precursor in the zebrafish embryo. Development 134, 4147–4156 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084 (1999).

    CAS  PubMed  Google Scholar 

  16. Yoder, M. C. et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7, 335–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Yoder, M. C., Hiatt, K. & Mukherjee, P. In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc. Natl Acad. Sci. USA 94, 6776–6780 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yokomizo, T. et al. Characterization of GATA-1+ hemangioblastic cells in the mouse embryo. EMBO J. 26, 184–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, M. J. et al. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9, 541–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Z. et al. Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11, 663–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Samokhvalov, I. M., Samokhvalova, N. I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka, Y. et al. Early ontogenic origin of the hematopoietic stem cell lineage. Proc. Natl Acad. Sci. USA 109, 4515–4520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    CAS  PubMed  Google Scholar 

  27. Rhodes, K. E. et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2, 252–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Bruijn, M. F. et al. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16, 673–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Medvinsky, A., Rybtsov, S. & Taoudi, S. Embryonic origin of the adult hematopoietic system: advances and questions. Development 138, 1017–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Dieterlen-Lievre, F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J. Embryol. Exp. Morphol. 33, 607–619 (1975).

    CAS  PubMed  Google Scholar 

  31. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Boisset, J. C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008). The first conclusive demonstration that HSCs transit through an endothelial stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eilken, H. M., Nishikawa, S. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Lancrin, C. et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457, 892–895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davidson, A. J. & Zon, L. I. The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene 23, 7233–7246 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nature Rev. Mol. Cell Biol. 10, 91–103 (2009).

    Article  CAS  Google Scholar 

  41. Beddington, R. S. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Langdon, Y. G. & Mullins, M. C. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu. Rev. Genet. 45, 357–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Schier, A. F. & Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Conlon, F. L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 (1994).

    CAS  PubMed  Google Scholar 

  45. Mishina, Y., Suzuki, A., Ueno, N. & Behringer, R. R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9, 3027–3037 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Johansson, B. M. & Wiles, M. V. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ciruna, B. G., Schwartz, L., Harpal, K., Yamaguchi, T. P. & Rossant, J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829–2841 (1997).

    CAS  PubMed  Google Scholar 

  49. Yamaguchi, T. P., Harpal, K., Henkemeyer, M. & Rossant, J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8, 3032–3044 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Gritsman, K. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Nostro, M. C., Cheng, X., Keller, G. M. & Gadue, P. Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2, 60–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amaya, E., Musci, T. J. & Kirschner, M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Draper, B. W., Stock, D. W. & Kimmel, C. B. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130, 4639–4654 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Griffin, K., Patient, R. & Holder, N. Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 121, 2983–2994 (1995).

    CAS  PubMed  Google Scholar 

  57. Szeto, D. P. & Kimelman, D. The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes Dev. 20, 1923–1932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martin, B. L. & Kimelman, D. Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev. Cell 22, 223–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stainier, D. Y., Weinstein, B. M., Detrich, H. W., Zon, L. I. & Fishman, M. C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–3150 (1995).

    CAS  PubMed  Google Scholar 

  60. Liao, W. et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124, 381–389 (1997).

    CAS  PubMed  Google Scholar 

  61. Ma, N. et al. Characterization of a weak allele of zebrafish cloche mutant. PLoS ONE 6, e27540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thompson, M. A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Agathon, A., Thisse, C. & Thisse, B. The molecular nature of the zebrafish tail organizer. Nature 424, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Miura, S., Davis, S., Klingensmith, J. & Mishina, Y. BMP signaling in the epiblast is required for proper recruitment of the prospective paraxial mesoderm and development of the somites. Development 133, 3767–3775 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Shimizu, T., Bae, Y. K., Muraoka, O. & Hibi, M. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Biol. 279, 125–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Ikeya, M. & Takada, S. Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech. Dev. 103, 27–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Pilon, N. et al. Cdx4 is a direct target of the canonical Wnt pathway. Dev. Biol. 289, 55–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Prinos, P. et al. Multiple pathways governing Cdx1 expression during murine development. Dev. Biol. 239, 257–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Davidson, A. J. et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300–306 (2003). The first report of potential candidates for the molecular factors that contribute to haematopoietic competence of lateral plate mesoderm.

    Article  CAS  PubMed  Google Scholar 

  70. Davidson, A. J. & Zon, L. I. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev. Biol. 292, 506–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lengerke, C. et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2, 72–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. McKinney-Freeman, S. L. et al. Modulation of murine embryonic stem cell-derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood 111, 4944–4953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishikawa, S. I., Nishikawa, S., Hirashima, M., Matsuyoshi, N. & Kodama, H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125, 1747–1757 (1998).

    CAS  PubMed  Google Scholar 

  75. Shalaby, F. et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Hogan, K. A. & Bautch, V. L. Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol. 62, 55–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Reese, D. E., Hall, C. E. & Mikawa, T. Negative regulation of midline vascular development by the notochord. Dev. Cell 6, 699–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Garriock, R. J. & Mikawa, T. Early arterial differentiation and patterning in the avian embryo model. Semin. Cell Dev. Biol. 22, 985–992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garriock, R. J., Czeisler, C., Ishii, Y., Navetta, A. M. & Mikawa, T. An anteroposterior wave of vascular inhibitor downregulation signals aortae fusion along the embryonic midline axis. Development 137, 3697–3706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin, S. W., Beis, D., Mitchell, T., Chen, J. N. & Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199–5209 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Furthauer, M., Thisse, B. & Thisse, C. Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 214, 181–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Wilkinson, R. N. et al. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev. Cell 16, 909–916 (2009). This study shows that BMP signalling is required for HSC specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005). The first demonstration that Hedgehog signalling is required for HSC specification.

    Article  CAS  PubMed  Google Scholar 

  84. Williams, C. et al. Hedgehog signaling induces arterial endothelial cell formation by repressing venous cell fate. Dev. Biol. 341, 196–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wilkinson, R. N. et al. Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish. Blood 120, 477–488 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Cleaver, O. & Krieg, P. A. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125, 3905–3914 (1998).

    CAS  PubMed  Google Scholar 

  87. Ren, X., Gomez, G. A., Zhang, B. & Lin, S. Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood 115, 5338–5346 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chun, C. Z. et al. Fli+etsrp+ hemato-vascular progenitor cells proliferate at the lateral plate mesoderm during vasculogenesis in zebrafish. PLoS ONE 6, e14732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin, H., Xu, J. & Wen, Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood 109, 5208–5214 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, F., Walmsley, M., Rodaway, A. & Patient, R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr. Biol. 18, 1234–1240 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Sumanas, S. et al. Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. Blood 111, 4500–4510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sumanas, S., Jorniak, T. & Lin, S. Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 106, 534–541 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sumanas, S. & Lin, S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol. 4, e10 (2006).

    Article  PubMed  CAS  Google Scholar 

  94. Lawson, N. D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001).

    CAS  PubMed  Google Scholar 

  95. Krebs, L. T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Koo, B. K. et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132, 3459–3470 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Koo, B. K. et al. An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS ONE 2, e1221 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Krebs, L. T. et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 18, 2469–2473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhong, T. P., Childs, S., Leu, J. P. & Fishman, M. C. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kokubo, H., Miyagawa-Tomita, S., Nakazawa, M., Saga, Y. & Johnson, R. L. Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev. Biol. 278, 301–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Herbert, S. P. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Burns, C. E., Traver, D., Mayhall, E., Shepard, J. L. & Zon, L. I. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev. 19, 2331–2342 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yoon, M. J. et al. Mind bomb-1 is essential for intraembryonic hematopoiesis in the aortic endothelium and the subaortic patches. Mol. Cell. Biol. 28, 4794–4804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Robert-Moreno, A., Espinosa, L., de la Pompa, J. L. & Bigas, A. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132, 1117–1126 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Robert-Moreno, A. et al. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J. 27, 1886–1895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18, 699–711 (2003). This study shows that Notch signalling is required for HSC specification.

    Article  CAS  PubMed  Google Scholar 

  112. Nakagawa, M. et al. AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108, 3329–3334 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Hadland, B. K. et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097–3105 (2004). This study shows that Notch 1 is cell-autonomously required for HSC specification.

    Article  CAS  PubMed  Google Scholar 

  114. Bertrand, J. Y., Cisson, J. L., Stachura, D. L. & Traver, D. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 115, 2777–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lawson, N. D., Vogel, A. M. & Weinstein, B. M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Ciau-Uitz, A., Pinheiro, P., Gupta, R., Enver, T. & Patient, R. Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling. Dev. Cell 18, 569–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Nicoli, S., Tobia, C., Gualandi, L., De Sena, G. & Presta, M. Calcitonin receptor-like receptor guides arterial differentiation in zebrafish. Blood 111, 4965–4972 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Connors, S. A., Trout, J., Ekker, M. & Mullins, M. C. The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 126, 3119–3130 (1999).

    CAS  PubMed  Google Scholar 

  119. Durand, C. et al. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc. Natl Acad. Sci. USA 104, 20838–20843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kirstetter, P., Anderson, K., Porse, B. T., Jacobsen, S. E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunol. 7, 1048–1056 (2006).

    Article  CAS  Google Scholar 

  121. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nature Immunol. 7, 1037–1047 (2006).

    Article  CAS  Google Scholar 

  123. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Luis, T. C., Ichii, M., Brugman, M. H., Kincade, P. & Staal, F. J. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26, 414–421 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Cobas, M. et al. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199, 221–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jeannet, G. et al. Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood 111, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Koch, U. et al. Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111, 160–164 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Luis, T. C. et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113, 546–554 (2009). The first conclusive demonstration of a specific WNT ligand required for HSC patterning.

    Article  CAS  PubMed  Google Scholar 

  130. Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12, 528–541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Luis, T. C., Naber, B. A., Fibbe, W. E., van Dongen, J. J. & Staal, F. J. Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 116, 496–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Luis, T. C. et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9, 345–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Ruiz-Herguido, C. et al. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J. Exp. Med. 209, 1457–1468 (2012). This study shows that canonical WNT signalling is required for HSC specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007). The first demonstration of prostaglandin involvement in HSC patterning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Goessling, W. et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8, 445–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol. 10, 468–477 (2009).

    Article  CAS  Google Scholar 

  139. Semenov, M. V., Habas, R., Macdonald, B. T. & He, X. SnapShot: noncanonical Wnt signaling pathways. Cell 131, 1378 (2007).

    Article  PubMed  Google Scholar 

  140. Clements, W. K. et al. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474, 220–224 (2011). This study indicates the presence of a non-canonical Wnt-dependent somitic pathway for HSC specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pouget, C., Pottin, K. & Jaffredo, T. Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev. Biol. 315, 437–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Wasteson, P. et al. Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135, 1823–1832 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Wiegreffe, C., Christ, B., Huang, R. & Scaal, M. Sclerotomal origin of smooth muscle cells in the wall of the avian dorsal aorta. Dev. Dyn. 236, 2578–2585 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Wiegreffe, C., Christ, B., Huang, R. & Scaal, M. Remodeling of aortic smooth muscle during avian embryonic development. Dev. Dyn. 238, 624–631 (2009).

    Article  PubMed  Google Scholar 

  145. Sato, Y. et al. Notch mediates the segmental specification of angioblasts in somites and their directed migration toward the dorsal aorta in avian embryos. Dev. Cell 14, 890–901 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Jones, E. A. Mechanical factors in the development of the vascular bed. Respir. Physiol. Neurobiol. 178, 59–65 (2011).

    Article  PubMed  Google Scholar 

  147. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. North, T. E. et al. Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748 (2009). References 147 and 148 demonstrate a requirement for blood flow in HSC specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, L. et al. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood 118, 4102–4110 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Moncada, S. & Higgs, E. A. Nitric oxide and the vascular endothelium. Handb. Exp. Pharmacol. 213–254 (2006).

  151. Mascarenhas, M. I., Parker, A., Dzierzak, E. & Ottersbach, K. Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood 114, 4645–4653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genet. 11, 40–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Fitch, S. R. et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11, 554–566 (2012). This study indicates interplay between the developing sympathetic nervous system and HSC specification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet. 25, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Moriguchi, T. et al. Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133, 3871–3881 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Tsarovina, K. et al. Essential role of Gata transcription factors in sympathetic neuron development. Development 131, 4775–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Tsarovina, K. et al. The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J. Neurosci. 30, 10833–10843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kennedy, M. et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 1722–1735 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Choi, K. D. et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 553–567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tober, J. et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 109, 1433–1441 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Le Guyader, D. et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Dzierzak, E. & Speck, N. A. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunol. 9, 129–136 (2008).

    Article  CAS  Google Scholar 

  164. Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  165. North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999).

    CAS  PubMed  Google Scholar 

  166. North, T. E. et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16, 661–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Kalev-Zylinska, M. L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129, 2015–2030 (2002).

    CAS  PubMed  Google Scholar 

  168. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shen, M. M. Nodal signaling: developmental roles and regulation. Development 134, 1023–1034 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Dutko, J. A. & Mullins, M. C. SnapShot: BMP signaling in development. Cell 145, 636.e2 (2011).

    Article  CAS  Google Scholar 

  171. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nature Rev. Cancer 10, 116–129 (2010).

    Article  CAS  Google Scholar 

  172. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Gazave, E. et al. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol. Biol. 9, 249 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health (NIH)/National Heart, Lung and Blood Institute grant R00 HL097150 to W.K.C., as well as a California Institute for Regenerative Medicine (CIRM) New Faculty Award (RN1-00575), NIH/National Institute of Diabetes and Digestive and Kidney Diseases grant R01 DK074482-06 and an American Heart Association (AHA) Innovative Science Award (12PILT12860010) to D.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Traver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Wilson K. Clements' homepage

David Traver's homepage

Glossary

Induced pluripotent stem cell

(iPS cell). An adult cell reprogrammed by one of several protocols to 'pluripotency', a state competent to form all embryonic tissues.

Ventral blood islands

A ventroposterior region of the embryo in Xenopus laevis and other species that houses primitive haematopoiesis, in particular erythropoiesis.

Dorsal lateral plate mesoderm

(DLP mesoderm). Trunk mesoderm in Xenopus laevis that is lateral to the more axial notochord and somitic mesoderm. The DLP mesoderm contains tissue fated to form haemogenic endothelium (and thus haematopoietic stem cells) and is equivalent to zebrafish lateral plate mesoderm and mammalian splanchnic mesoderm.

Mid-neurula

In Xenopus laevis, a time in the middle of formation of the neural plate that occurs between the end of gastrulation (formation of the germ layers) and the initiation of somitogenesis.

Haemogenic endothelium

Endothelial cells found most notably in the ventral floor of the dorsal aorta that give rise to haematopoietic stem cells.

Yolk sac

An extra-embryonic tissue derived from the fertilized egg in mammals that ultimately surrounds the embryo and at early times functions as a signalling centre. The yolk sac is also the site of primitive and transient definitive haematopoiesis.

Dorsal aorta

The earliest trunk vessel and precursor to the adult descending aorta. Endothelium of the dorsal aorta forms from splanchnic mesoderm and contains the haemogenic endothelium that generates the first haematopoietic stem cells.

Aorta–gonads–mesonephros

The embryonic region in the embryonic day 9.5–11.0 mouse containing the primitive dorsal aorta and bounded by the mesonephros and gonads, where haematopoietic stem cells are specified.

Lateral

Anatomical adjective defining the direction away from the midline.

Anamniotes

An informal grouping of vertebrates (including frogs and fish) that develop external to the mother in eggs without an amnion, in contrast to birds and mammals, which have amnions.

Somites

Primitive mesodermal tissue found lateral to the notochord and axial to the lateral plate or splanchnic mesoderm. This tissue is segmented and contains precursors for adult skeleton, skeletal muscle, vascular smooth muscle and dermis.

Epiblast

In mouse and chick, the embryonic portion of the embryo before formation of the primary germ layers (ectoderm, mesoderm and endoderm).

Primitive streak

The site in the epiblast of primary ingression of cells that give rise to mesoderm.

Dorsal–ventral

Anatomical adjectives defining the back and belly directions, respectively.

Anterior–posterior

Anatomical adjectives defining the head and tail directions, respectively.

Dorsal organizer

A group of cells acting as a signalling centre that patterns local tissue to a specific fate, in this case dorsal and anterior. Sometimes known as 'Spemanns organizer'.

Intermediate cell mass

A region in the axial trunk of the 23–28 hours post fertilization zebrafish embryo that is ventral to the notochord. Primitive haematopoiesis occurs here, as well as formation of the haemogenic endothelium.

Yolk ball

An extra-embryonic region of the zebrafish embryo that contains nutrients that sustain early development before feeding.

Serial transplantation

A procedure to test the longevity and self-renewal potential of putative populations of haematopoietic stem cells by transplanting into primary, secondary, tertiary and higher-order recipients.

Sclerotome

A ventromedial compartment of each somite containing a variety of tissue precursors, including vertebral column cells, breast bone cells and vascular smooth muscle cells.

Sympathetic nervous system

A neural crest-derived component of the autonomic nervous system that regulates tissue responses including the 'fight-or-flight' response. The sympathetic nervous system develops in tandem with the adrenal glands and regulates secretion of cardiovascular system regulatory hormones including the catecholamines adrenaline and noradrenaline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clements, W., Traver, D. Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol 13, 336–348 (2013). https://doi.org/10.1038/nri3443

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing