Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The integration of T cell migration, differentiation and function

Key Points

  • Although the classical model of T cell entry into secondary lymphoid organs suggests that this requires CD62L, CC-chemokine receptor 7 (CCR7) and lymphocyte function-associated antigen 1 (LFA1) to support the rolling, activation and arrest of T cells at high endothelial venules, the rules are different for T cell entry in mucosal-associated lymphoid tissue, splenic white pulp and inflamed lymph nodes. T cells may also enter a lymph node downstream of a neighbouring lymph node via the afferent lymphatics. Intranodal motility is regulated by CCR7, while egress of T cells is dictated by responsiveness to sphingosine-1-phosphate (S1P) gradients.

  • Migration of activated T cells into non-lymphoid tissues may be somewhat promiscuous; however, it is influenced by developmental cues that reflect the site of T cell priming as well as the inflammatory status of the target tissue.

  • Effector T cells use various strategies to increase the efficiency of their scanning for antigen in non-lymphoid tissues. These strategies include the use of Lévy walks and adopting a 'dendritic-like' morphology in order to simultaneously contact multiple targets.

  • After pathogen clearance, memory T cells found in non-lymphoid tissues are either tissue-resident or re-circulating. Resident memory T cells adapt their phenotype in response to local cues within non-lymphoid tissues, and this may optimize site-specific protective immune responses by affecting T cell function and allowing for their long-term maintenance within these unique environments.

  • Non-lymphoid organs comprise many tissue types and compartments, each of which may be populated by different T cell subsets. Histological analyses as well as intravascular labelling of capillary-bound T cells may be necessary to place populations in their proper anatomical context.

  • The central memory T cell and effector memory T cell nomenclature suffers from an absence of universally accepted definitions. Refining these terms will be necessary for the field to optimally conceptualize and communicate the additional complexity of migration and location-dependent T cell differentiation states that have recently been characterized.

Abstract

T cells function locally. Accordingly, T cells' recognition of antigen, their subsequent activation and differentiation, and their role in the processes of infection control, tumour eradication, autoimmunity, allergy and alloreactivity are intrinsically coupled with migration. Recent discoveries revise our understanding of the regulation and patterns of T cell trafficking and reveal limitations in current paradigms. Here, we review classic and emerging concepts, highlight the challenge of integrating new observations with existing T cell classification schemes and summarize the heuristic framework provided by viewing T cell differentiation and function first through the prism of migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell recirculation through lymph nodes.
Figure 2: Location dictates homing and differentiation in two discrete phases.
Figure 3: Means by which T cells within non-lymphoid tissues increase their efficiency of immunosurveillance and pathogen control.
Figure 4: Location dictates the rapidity by which memory T cells contribute to protection.
Figure 5: Tissue architecture considerations for T cell trafficking, subsets and analyses of isolated populations.
Figure 6: Anatomic compartmentalization of representative tissues where T cells may be sampled.

Similar content being viewed by others

References

  1. Obar, J. J., Khanna, K. M. & Lefrançois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gowans, J. L. The effect of the continuous re-infusion of lymph and lymphocytes on the output of lymphocytes from the thoracic duct of unanaesthetized rats. Br. J. Exp. Pathol. 38, 67–78 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gowans, J. L. & Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B. 159, 257–282 (1964).

    Article  CAS  PubMed  Google Scholar 

  5. Whaler, B. C. & Widdicombe, J. G. The blood life-span of the lymphocyte in rabbits and rats. J. Physiol. 132. 41–42 (1956).

    CAS  PubMed  Google Scholar 

  6. Gowans, J. L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146, 54–69 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandl, J. N. et al. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naïve CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA 38, 263–274 (2012).

    Google Scholar 

  8. Gallatin, W. M., Weissman, I. L. & Butcher, E. C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304, 30–34 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Rosen, S. D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Bao, X. et al. Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33, 817–829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andrian, von, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  12. Andrian, von, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  Google Scholar 

  13. Bargatze, R. F., Jutila, M. A. & Butcher, E. C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: The multistep model confirmed and refined. Immunity 3, 99–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Scimone, M. L. et al. CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J. Exp. Med. 199, 1113–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nature Immunol. 12, 879–887 (2011).

    CAS  Google Scholar 

  18. Kaiser, A. A., Donnadieu, E. E., Abastado, J.-P. J., Trautmann, A. A. & Nardin, A. A. CC chemokine ligand 19 secreted by mature dendritic cells increases naive T cell scanning behavior and their response to rare cognate antigen. J. Immunol. 175, 2349–2356 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Bousso, P. & Robey, E. Dynamics of CD 8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003).

    Article  CAS  Google Scholar 

  20. Lo, C. G. et al. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201, 291–301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arnon, T. I., Xu, Y., Lo, C., Pham, T. & An, J. GRK2-Dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333, 1898–1903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Rosen, H., Sanna, M. G., Cahalan, S. M. & Gonzalez-Cabrera, P. J. Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol. 28, 102–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Bardi, G. G., Lipp, M. M., Baggiolini, M. M. & Loetscher, P. P. The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur. J. Immunol. 31, 3291–3297 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kohout, T. A. T. et al. Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J. Biol. Chem. 279, 23214–23222 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Zidar, D. A., Violin, J. D., Whalen, E. J. & Lefkowitz, R. J. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc. Natl Acad. Sci. USA 106, 9649–9654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McLachlan, J. B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunol. 4, 1199–1205 (2003).

    Article  CAS  Google Scholar 

  29. Janatpour, M. J. et al. Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med. 194, 1375–1384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Webster, B. et al. Regulation of lymph node vascular growth by dendritic cells. J. Exp. Med. 203, 1903–1913 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soderberg, K. A. et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc. Natl Acad. Sci. USA 102, 16315–16320 (2012).

    Article  CAS  Google Scholar 

  32. Hay, J. B. & Hobbs, B. B. The flow of blood to lymph nodes and its relation to lymphocyte traffic and the immune response. J. Exp. Med. 145, 31–44 (2012).

    Article  Google Scholar 

  33. Steeber, D. A., Erickson, C. M., Hodde, K. C. & Albrecht, R. M. Vascular changes in popliteal lymph nodes due to antigen challenge in normal and lethally irradiated mice. Scann. Microsc. 1, 831–839 (1987).

    CAS  Google Scholar 

  34. Cahill, R. N., Frost, H. & Trnka, Z. The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J. Exp. Med. 143, 870–888 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440, 890–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hickman, H. D. et al. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J. Exp. Med. 208, 2511–2524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Groom, J. R. et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091–1103 (2012). References 35–37 demonstrate the highly orchestrated localization of T cells to interfollicular and medullary zones within lymph nodes in response to antigen challenge.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guarda, G. et al. L-selectin-negative CCR7 effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nature Immunol. 8, 743–752 (2007). This study demonstrates that migration into reactive lymph nodes is transiently CD62L and CCR7 independent.

    Article  CAS  Google Scholar 

  39. Shiow, L. R. et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Mescher, M. F. et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol. Rev. 211, 81–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, C. S., Deenick, E. K., Batten, M. & Tangye, S. G. The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 209, 1241–1253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. León, B. et al. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nature Immunol. 13, 681–690 (2012).

    Article  CAS  Google Scholar 

  44. Segel, G. B., Cokelet, G. R. & Lichtman, M. A. The measurement of lymphocyte volume: importance of reference particle deformability and counting solution tonicity. Blood 57, 894–899 (1981).

    CAS  PubMed  Google Scholar 

  45. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Salmi, M. & Jalkanen, S. Lymphocyte homing to the gut: attraction, adhesion, and commitment. Immunol. Rev. 206, 100–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Johansson-Lindbom, B. & Agace, W. W. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol. Rev. 215, 226–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004). This paper defined a mechanism for imprinting T cells with tissue-specific homing.

    Article  CAS  PubMed  Google Scholar 

  50. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stagg, A. J., Kamm, M. A. & Knight, S. C. Intestinal dendritic cells increase T cell expression of α4β7 integrin. Eur. J. Immunol. 32, 1445–1454 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Austrup, F. et al. P− and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385, 81–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Picker, L. J. et al. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J. Immunol. 150, 1122–1136 (1993).

    CAS  PubMed  Google Scholar 

  55. Reiss, Y., Proudfoot, A. E., Power, C. A., Campbell, J. J. & Butcher, E. C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J. Exp. Med. 194, 1541–1547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sigmundsdottir, H. & Butcher, E. C. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nature Immunol. 9, 981–987 (2008).

    Article  CAS  Google Scholar 

  58. Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nature Immunol. 8, 285–293 (2007).

    Article  CAS  Google Scholar 

  59. Kunkel, E. J. & Butcher, E. C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Stenstad, H., Svensson, M., Cucak, H., Kotarsky, K. & Agace, W. W. Differential homing mechanisms regulate regionalized effector CD8αβ+ T cell accumulation within the small intestine. Proc. Natl Acad. Sci. USA 104, 10122–10127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang, S. S. et al. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J. Exp. Med. 208, 747–759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Svensson, M. et al. Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol. 1, 38–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Román, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campanella, G. S. V., Medoff, B. D., Manice, L. A., Colvin, R. A. & Luster, A. D. Development of a novel chemokine-mediated in vivo T cell recruitment assay. J. Immunol. Methods 331, 127–139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, L., Fuhlbrigge, R. C., Karibian, K., Tian, T. & Kupper, T. S. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25, 511–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Masopust, D. et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol. 172, 4875 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaufman, D. R. et al. Trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination. J. Immunol. 181, 4188–4198 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Stevceva, L. et al. Both mucosal and systemic routes of immunization with the live, attenuated NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result in gag-specific CD8+ T-cell responses in mucosal tissues of macaques. J. Virol. 76, 11659–11676 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, H. et al. Durable mucosal simian immunodeficiency virus-specific effector memory T lymphocyte responses elicited by recombinant adenovirus vectors in rhesus monkeys. J. Virol. 85, 11007–11015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Belyakov, I. M., Hammond, S. A., Ahlers, J. D., Glenn, G. M. & Berzofsky, J. A. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J. Clin. Invest. 113, 998–1007 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marshall, D. R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 98, 6313–6318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Agrewala, J. N. et al. Unique ability of activated CD4+ T cells but not rested effectors to migrate to non-lymphoid sites in the absence of inflammation. J. Biol. Chem. 282, 6106–6115 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Coombes, J. L. & Robey, E. A. Dynamic imaging of host-pathogen interactions in vivo. Nature Rev. Immunol. 10, 353–364 (2010).

    Article  CAS  Google Scholar 

  78. Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nature Immunol. 10, 1185–1192 (2009).

    Article  CAS  Google Scholar 

  79. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011). This study identified both recirculating and resident memory T cell populations within the skin, and showed that migration behaviour varied between the dermis and epidermis.

    Article  CAS  PubMed  Google Scholar 

  80. Egen, J. G. et al. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34, 807–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Looney, M. R. et al. Stabilized imaging of immune surveillance in the mouse lung. Nature Methods 8, 91–96 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Li, W. et al. Intravital 2-photon imaging of leukocyte trafficking in beating heart. J. Clin. Invest. 122, 2499–2508 (2012). References 82 and 83 apply intravital two-photon microscopy to visualize leukocyte motility within the lung and the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Harris, T. H. et al. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012). References 85 and 88 show various strategies that increase the efficiency of pathogen immunosurveillance or control by effector T cells within non-lymphoid tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Budhu, S. et al. CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J. Exp. Med. 207, 223–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eberl, G., Aebischer, T., Späth, G. F. & Bousso, P. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37, 147–157 (2012).

    Article  PubMed  CAS  Google Scholar 

  89. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA 109, 19739–19744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999). This study was the first to parse memory T cells into T CM and T EM cells.

    Article  CAS  PubMed  Google Scholar 

  91. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Masopust, D. & Picker, L. J. Hidden memories: frontline memory t cells and early pathogen interception. J. Immunol. 188, 5811–5817 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Lefrançois, L. & Puddington, L. Intestinal and pulmonary mucosal T cells: local heroes fight to maintain the status quo. Annu. Rev. Immunol. 24, 681–704 (2006).

    Article  PubMed  CAS  Google Scholar 

  96. Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues. Nature Rev. Immunol. 9, 153–161 (2009).

    Article  CAS  Google Scholar 

  97. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006). This study showed that the tissue microenvironment influences T cell differentiation in situ.

    Article  CAS  PubMed  Google Scholar 

  99. Gebhardt, T., Mueller, S. N., Heath, W. R. & Carbone, F. R. Peripheral tissue surveillance and residency by memory T cells. Trends Immunol. 34, 27–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Abitorabi, M. A. et al. Differential expression of homing molecules on recirculating lymphocytes from sheep gut, peripheral, and lung lymph. J. Immunol. 156, 3111–3117 (1996).

    CAS  PubMed  Google Scholar 

  102. Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nature Immunol. 6, 889–894 (2005).

    Article  CAS  Google Scholar 

  103. Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nature Immunol. 6, 895–901 (2005). References 102 and 103 provide evidence that T cell egress from non-lymphoid tissues is regulated by CCR7.

    Article  CAS  Google Scholar 

  104. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol. 10, 524–530 (2009).

    CAS  Google Scholar 

  105. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl Acad. Sci. USA 108, 16741–16746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011). References 104, 105 and 107 show that resident T EM cells positioned within non-lymphoid tissues accelerate pathogen control upon local re-infection.

    Article  CAS  PubMed  Google Scholar 

  108. Lee, Y. T. et al. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol. 85, 4085–4094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647–1657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kohlmeier, J. E., Miller, S. C. & Woodland, D. L. Cutting edge: antigen is not required for the activation and maintenance of virus-specific memory CD8+ T cells in the lung airways. J. Immunol. 178, 4721 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. McCully, M. L. et al. Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 4591–4598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 1–11 (2012).

    Google Scholar 

  113. Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3267–3268 (2012).

    Article  CAS  Google Scholar 

  114. Ledgerwood, L. G. et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nature Immunol. 9, 42–53 (2008).

    Article  CAS  Google Scholar 

  115. Bromley, S. K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A. D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Abernethy, N. J., Hay, J. B., Kimpton, W. G., Washington, E. & Cahill, R. N. Lymphocyte subset-specific and tissue-specific lymphocyte-endothelial cell recognition mechanisms independently direct the recirculation of lymphocytes from blood to lymph in sheep. Immunology 72, 239–245 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Anderson, K. G. et al. Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189, 2702–2706 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1–ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Scanlon, S. T. et al. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J. Exp. Med. 208, 2113–2124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Strutt, T. M. et al. Memory CD4+ T cells induce innate responses independently of pathogen. Nature Med. 16, 558–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Ely, K. H. et al. Nonspecific recruitment of memory CD8+ T cells to the lung airways during respiratory virus infections. J. Immunol. 170, 1423–1429 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Wakim, L. M., Gebhardt, T., Heath, W. R. & Carbone, F. R. Cutting edge: local recall responses by memory T cells newly recruited to peripheral nonlymphoid tissues. J. Immunol. 181, 5837–5841 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Hikono, H. et al. Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J. Exp. Med. 204, 1625–1636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rocha, B. & Tanchot, C. The Tower of Babel of CD8+ T-cell memory: known facts, deserted roads, muddy waters, and possible dead ends. Immunol. Rev. 211, 182–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012). This report describes an approach for gathering the cellular positioning information of histological analyses with the quantitative power of flow cytometry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brandtzaeg, P., Kiyono, H., Pabst, R. & Russell, M. W. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 1, 31–37 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank V. Vezys and S. Jameson (University of Minnesota) for helpful discussion. This study was supported by US National Institutes of Health (NIH) grant R01AI084913-01 (to D.M.), NIH grant T32AI007313 (to J.M.S.) and the Office Of The Director, NIH, under Award Number DP2OD006467 (to D.M.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Masopust.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Masopust's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masopust, D., Schenkel, J. The integration of T cell migration, differentiation and function. Nat Rev Immunol 13, 309–320 (2013). https://doi.org/10.1038/nri3442

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing