Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Functional immunoimaging: the revolution continues

Abstract

Ten years ago, in 2002, the introduction of dynamic in vivo imaging to immunologists set a new standard for studying immune responses. In particular, two-photon imaging has provided tremendous insights into immune cell dynamics in various contexts, including infection, cancer, transplantation and autoimmunity. Whereas initial studies were restricted to the migration of and interactions between immune cells, recent advances are bringing intravital imaging to a new level in which cell dynamics and function can be investigated simultaneously. These exciting developments further broaden the applications of immunoimaging and provide unprecedented opportunities to probe and decode immune cell communication in situ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illuminating the many facets of the immune system.
Figure 2: The expanding toolbox of immunoimaging.
Figure 3: Combining imaging and phenotyping.

Similar content being viewed by others

References

  1. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  3. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte–stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Le Borgne, M. et al. The impact of negative selection on thymocyte migration in the medulla. Nature Immunol. 10, 823–830 (2009).

    Article  CAS  Google Scholar 

  5. Ladi, E. et al. Thymocyte–dendritic cell interactions near sources of CCR7 ligands in the thymic cortex. J. Immunol. 181, 7014–7023 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 2604–2609 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003).

    Article  CAS  Google Scholar 

  9. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440, 890–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hugues, S. et al. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nature Immunol. 8, 921–930 (2007).

    Article  CAS  Google Scholar 

  12. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Skokos, D. et al. Peptide–MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nature Immunol. 8, 835–844 (2007).

    Article  CAS  Google Scholar 

  14. Henrickson, S. E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nature Immunol. 9, 282–291 (2008).

    Article  CAS  Google Scholar 

  15. Moreau, H. D. et al. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37, 351–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nature Immunol. 10, 1185–1192 (2009).

    Article  CAS  Google Scholar 

  17. Schneider, H. et al. Reversal of the TCR stop signal by CTLA-4. Science 313, 1972–1975 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol. 7, 83–92 (2006).

    Article  CAS  Google Scholar 

  19. Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia, Z. et al. Competition for antigen determines the stability of T cell–dendritic cell interactions during clonal expansion. Proc. Natl Acad. Sci. USA 104, 4553–4558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hugues, S. et al. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nature Immunol. 5, 1235–1242 (2004).

    Article  CAS  Google Scholar 

  22. Shakhar, G. et al. Stable T cell–dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nature Immunol. 6, 707–714 (2005).

    Article  CAS  Google Scholar 

  23. Scholer, A., Hugues, S., Boissonnas, A., Fetler, L. & Amigorena, S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28, 258–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Zinselmeyer, B. H. et al. In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J. Exp. Med. 201, 1815–1823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Celli, S., Lemaitre, F. & Bousso, P. Real-time manipulation of T cell–dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27, 625–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    CAS  PubMed  Google Scholar 

  32. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Chtanova, T. et al. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity 31, 342–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barral, P. et al. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nature Immunol. 11, 303–312 (2010).

    Article  CAS  Google Scholar 

  35. Hickman, H. D. et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nature Immunol. 9, 155–165 (2008).

    Article  CAS  Google Scholar 

  36. Wei, S. H. et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nature Immunol. 6, 1228–1235 (2005).

    Article  CAS  Google Scholar 

  37. Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunol. 10, 58–65 (2009).

    Article  CAS  Google Scholar 

  38. Schaeffer, M. et al. Dynamic imaging of T cell–parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J. Immunol. 182, 6379–6393 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Filipe-Santos, O. et al. A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Egen, J. G. et al. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34, 807–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Egen, J. G. et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28, 271–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flugel, A., Odoardi, F., Nosov, M. & Kawakami, N. Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy. J. Neuroimmunol. 191, 86–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749–2761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Breart, B., Lemaitre, F., Celli, S. & Bousso, P. Two-photon imaging of intratumoral CD8 T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest. 118, 1390–1397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deguine, J., Breart, B., Lemaitre, F., Di Santo, J. P. & Bousso, P. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity 33, 632–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Celli, S., Albert, M. L. & Bousso, P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nature Med. 17, 744–749 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Coppieters, K., Amirian, N. & von Herrath, M. Intravital imaging of CTLs killing islet cells in diabetic mice. J. Clin. Invest. 122, 119–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Li, W. et al. Intravital 2-photon imaging of leukocyte trafficking in beating heart. J. Clin. Invest. 122, 2499–2508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Looney, M. R. et al. Stabilized imaging of immune surveillance in the mouse lung. Nature Methods 8, 91–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Pham, T. H., Okada, T., Matloubian, M., Lo, C. G. & Cyster, J. G. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Steven, P., Bock, F., Huttmann, G. & Cursiefen, C. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels. PLoS ONE 6, e26253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Germain, R. N., Robey, E. A. & Cahalan, M. D. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336, 1676–1681 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Odoardi, F., Kawakami, N., Klinkert, W. E., Wekerle, H. & Flugel, A. Blood-borne soluble protein antigen intensifies T cell activation in autoimmune CNS lesions and exacerbates clinical disease. Proc. Natl Acad. Sci. USA 104, 18625–18630 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Worbs, T., Mempel, T. R., Bolter, J., von Andrian, U. H. & Forster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204, 489–495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matheu, M. P. et al. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29, 602–614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feske, S. Calcium signalling in lymphocyte activation and disease. Nature Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  Google Scholar 

  63. Bhakta, N. R., Oh, D. Y. & Lewis, R. S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nature Immunol. 6, 143–151 (2005).

    Article  CAS  Google Scholar 

  64. Qi, H., Egen, J. G., Huang, A. Y. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Wei, S. H. et al. Ca2+ signals in CD4+ T cells during early contacts with antigen-bearing dendritic cells in lymph node. J. Immunol. 179, 1586–1594 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sinclair, L. V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunol. 9, 513–521 (2008).

    Article  CAS  Google Scholar 

  68. Kahn, J., Walcheck, B., Migaki, G. I., Jutila, M. A. & Kishimoto, T. K. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell 92, 809–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Melichar, H. J. et al. Quantifying subcellular distribution of fluorescent fusion proteins in cells migrating within tissues. Immunol. Cell Biol. 89, 549–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Friedman, R. S., Beemiller, P., Sorensen, C. M., Jacobelli, J. & Krummel, M. F. Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics. J. Exp. Med. 207, 2733–2749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Azar, G. A., Lemaitre, F., Robey, E. A. & Bousso, P. Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc. Natl Acad. Sci. USA 23, 3675–3680 (2010).

    Article  Google Scholar 

  73. Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nature Immunol. 5, 1243–1250 (2004).

    Article  CAS  Google Scholar 

  75. Boissonnas, A. et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity 32, 266–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Beuneu, H. et al. Visualizing the functional diversification of CD8+ T cell responses in lymph nodes. Immunity 33, 412–423 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Weber, K. et al. RGB marking facilitates multicolor clonal cell tracking. Nature Med. 17, 504–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Sanderson, N. S. et al. Cytotoxic immunological synapses do not restrict the action of interferon-γ to antigenic target cells. Proc. Natl Acad. Sci. USA 109, 7835–7840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nature Methods 6, 331–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, W. et al. Cell-surface sensors for real-time probing of cellular environments. Nature Nanotechnol. 6, 524–531 (2011).

    Article  CAS  Google Scholar 

  84. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chodaczek, G., Papanna, V., Zal, M. A. & Zal, T. Body-barrier surveillance by epidermal γδ TCRs. Nature Immunol. 13, 272–282 (2012).

    Article  CAS  Google Scholar 

  86. Barretto, R. P. et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature Med. 17, 223–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Vadakkan, T. J., Culver, J. C., Gao, L., Anhut, T. & Dickinson, M. E. Peak multiphoton excitation of mCherry using an optical parametric oscillator (OPO). J. Fluoresc. 19, 1103–1109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues for not being able to mention all of the important contributions that have been made in this field owing to space limitations. We wish to thank members of the Bousso laboratory for generating data contributing to this article. This work is supported by the Institut Pasteur, INSERM, the Fondation pour la Recherche Médicale and the European Research Council starting grant 'LymphocyteContact'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bousso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Philippe Bousso's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousso, P., Moreau, H. Functional immunoimaging: the revolution continues. Nat Rev Immunol 12, 858–864 (2012). https://doi.org/10.1038/nri3342

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing