Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FOXO transcription factors throughout T cell biology

Key Points

  • Forkhead box O (FOXO) transcription factors can affect many aspects of organismal physiology, including immunity, longevity, metabolism and oncogenesis. They can activate or repress gene expression and affect chromatin accessibility; in each case, the effects are context dependent.

  • FOXO1 and FOXO3 are the major FOXO paralogues expressed in T cells, and they have distinct (but sometimes overlapping) functions in T cell survival and differentiation. Genetic experiments indicate that FOXO1 is the predominant factor.

  • Inhibition of FOXO transcription factors constitutes a major endpoint in phosphoinositide 3-kinase (PI3K) signalling that is accentuated by extracellular signal-regulated kinase (ERK) signalling or inflammatory signals mediated by IκB kinase. This activity may be opposed in some cells by oxidative stress or an energy deficiency.

  • FOXO1 and FOXO3 have overlapping but unique effects on the survival of T cells during primary and secondary population expansion. Attenuation of FOXO3 may lead to enhanced memory cell survival, as evidenced by increases in HIV-specific T cells in elite controller patients.

  • FOXO1 regulates CD4+ T cell differentiation, including the development and function of regulatory T cells and T helper 1 cells.

  • In CD8+ T cell differentiation, FOXO1 is required for diminished T-bet and enhanced eomesodermin expression in memory T cells. FOXO1 may also be required for the expansion of CD8+ memory T cell populations.

Abstract

The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family — which is central to the integration of growth factor signalling, oxidative stress and inflammation — provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A signalling scheme regulating FOXO transcription factors.
Figure 2: Inhibitory and activating post-translational modifications of FOXO1 transcription factors mapped onto a schematic diagram of the functional domains.
Figure 3: Context-dependent FOXO transcriptional activity.
Figure 4: The Foxp3 locus.

Similar content being viewed by others

References

  1. Kaestner, K. H., Knochel, W. & Martinez, D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146 (2000).

    CAS  PubMed  Google Scholar 

  2. Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol. 20, 9138–9148 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stahl, M. et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J. Immunol. 168, 5024–5031 (2002).

    CAS  PubMed  Google Scholar 

  4. Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    CAS  PubMed  Google Scholar 

  5. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin, K. & Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    CAS  PubMed  Google Scholar 

  7. Salih, D. A. & Brunet, A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20, 126–136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kousteni, S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50, 437–443 (2012).

    CAS  PubMed  Google Scholar 

  9. Zhang, X. et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biol. 13, 1092–1099 (2011).

    CAS  PubMed  Google Scholar 

  10. Barolo, S. & Posakony, J. W. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 16, 1167–1181 (2002).

    CAS  PubMed  Google Scholar 

  11. Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    CAS  PubMed  Google Scholar 

  12. Hedrick, S. M. The cunning little vixen: Foxo and the cycle of life and death. Nature Immunol. 10, 1057–1063 (2009).

    CAS  Google Scholar 

  13. van den Berg, M. C. & Burgering, B. M. Integrating opposing signals toward Forkhead box O. Antioxid. Redox Signal. 14, 607–621 (2011).

    CAS  PubMed  Google Scholar 

  14. van der Vos, K. E. & Coffer, P. J. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 14, 579–592 (2011).

    CAS  PubMed  Google Scholar 

  15. Lin, L., Hron, J. D. & Peng, S. L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    CAS  PubMed  Google Scholar 

  16. Dejean, A. S., Hedrick, S. M. & Kerdiles, Y. M. Highly specialized role of Forkhead box O transcription factors in the immune system. Antioxid. Redox Signal. 14, 663–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ouyang, W. & Li, M. O. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol. 32, 26–33 (2011).

    CAS  PubMed  Google Scholar 

  18. Essaghir, A., Dif, N., Marbehant, C. Y., Coffer, P. J. & Demoulin, J. B. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J. Biol. Chem. 284, 10334–10342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Mubarak, B., Soriano, F. X. & Hardingham, G. E. Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene. Channels (Austin) 3, 233–238 (2009).

    CAS  Google Scholar 

  20. Welinder, E. et al. The transcription factors E2A and HEB act in concert to induce the expression of FOXO1 in the common lymphoid progenitor. Proc. Natl Acad. Sci. USA 108, 17402–17407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oh, H. M. et al. STAT3 protein promotes T-cell survival and inhibits interleukin-2 production through up-regulation of Class O Forkhead transcription factors. J. Biol. Chem. 286, 30888–30897 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunol. 11, 635–643 (2010).

    CAS  Google Scholar 

  23. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    CAS  PubMed  Google Scholar 

  24. Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).

    CAS  PubMed  Google Scholar 

  25. Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    CAS  PubMed  Google Scholar 

  26. Facchinetti, V. et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 27, 1932–1943 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunet, A. et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell. Biol. 21, 952–965 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757–768 (2011).

    CAS  PubMed  Google Scholar 

  29. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  30. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  31. Bridge, D. et al. FoxO and stress responses in the cnidarian Hydra vulgaris. PLoS ONE 5, e11686 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    CAS  PubMed  Google Scholar 

  33. Burgering, B. M. & Medema, R. H. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol. 73, 689–701 (2003).

    CAS  PubMed  Google Scholar 

  34. Charvet, C. et al. Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression. J. Immunol. 177, 5024–5031 (2006).

    CAS  PubMed  Google Scholar 

  35. Wood, J. E., Schneider, H. & Rudd, C. E. TcR and TcR-CD28 engagement of protein kinase B (PKB/AKT) and glycogen synthase kinase-3 (GSK-3) operates independently of guanine nucleotide exchange factor VAV-1. J. Biol. Chem. 281, 32385–32394 (2006).

    CAS  PubMed  Google Scholar 

  36. Yang, J. Y. et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nature Cell Biol. 10, 138–148 (2008).

    CAS  PubMed  Google Scholar 

  37. Chang, C. F. et al. Polar opposites: Erk direction of CD4 T cell subsets. J. Immunol. 189, 721–731 (2012).

    CAS  PubMed  Google Scholar 

  38. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayden, M. S. & Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203–234 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Guzman, M. L. et al. Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001).

    CAS  PubMed  Google Scholar 

  41. Frelin, C. et al. Targeting NF-κB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood 105, 804–811 (2005).

    CAS  PubMed  Google Scholar 

  42. Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    CAS  PubMed  Google Scholar 

  43. Dejean, A. S. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nature Immunol. 10, 504–513 (2009).

    CAS  Google Scholar 

  44. Shin, J. H. et al. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5. Genes Immun. 8, 503–512 (2007).

    CAS  PubMed  Google Scholar 

  45. Hellquist, A. et al. The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J. Med. Genet. 44, 314–321 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cousins, L. et al. Eosinophilic bowel disease controlled by the BB rat-derived Lymphopenia/Gimap5 gene. Gastroenterology 131, 1475–1485 (2006).

    CAS  PubMed  Google Scholar 

  47. Aksoylar, H. I., Lampe, K., Barnes, M. J., Plas, D. R. & Hoebe, K. Loss of immunological tolerance in Gimap5-deficient mice is associated with loss of Foxo in CD4+ T cells. J. Immunol. 188, 146–154 (2012).

    CAS  PubMed  Google Scholar 

  48. Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell. Biol. 156, 817–828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lehtinen, M. K. et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001 (2006).

    CAS  PubMed  Google Scholar 

  50. Sunayama, J., Tsuruta, F., Masuyama, N. & Gotoh, Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J. Cell. Biol. 170, 295–304 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamagata, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221–231 (2008).

    CAS  PubMed  Google Scholar 

  52. Kitamura, Y. I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    CAS  PubMed  Google Scholar 

  53. Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun. 379, 1005–1008 (2009).

    CAS  PubMed  Google Scholar 

  54. Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117 (2006).

    CAS  PubMed  Google Scholar 

  55. Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    CAS  PubMed  Google Scholar 

  56. Reiling, J. H. & Sabatini, D. M. Stress and mTORture signaling. Oncogene 25, 6373–6383 (2006).

    CAS  PubMed  Google Scholar 

  57. Haltiwanger, R. S., Holt, G. D. & Hart, G. W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 265, 2563–2568 (1990).

    CAS  PubMed  Google Scholar 

  58. Marshall, S., Bacote, V. & Traxinger, R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712 (1991).

    CAS  PubMed  Google Scholar 

  59. Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Guttilla, I. K. & White, B. A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem. 284, 23204–23216 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Segura, M. F. et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl Acad. Sci. USA 106, 1814–1819 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Myatt, S. S. et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 70, 367–377 (2010).

    CAS  PubMed  Google Scholar 

  63. Stittrich, A. B. et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nature Immunol. 11, 1057–1062 (2010).

    CAS  Google Scholar 

  64. Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamamoto, M. et al. miR-155, a modulator of FOXO3a protein expression, is underexpressed and cannot be upregulated by stimulation of HOZOT, a line of multifunctional treg. PLoS ONE 6, e16841 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nature Immunol. 10, 176–184 (2009). This study shows that FOXO1 regulates naive T cell survival and homing through the control of IL-7Rα and KLF2 expression, respectively.

    CAS  Google Scholar 

  67. Sullivan, J. A., Kim, E. H., Plisch, E. H., Peng, S. L. & Suresh, M. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms. PLos Pathog. 8, e1002533 (2012). In this study, the authors show that a T cell-specific deletion of Foxo3 results in increased numbers of effector and memory CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009). This paper shows that FOXO1 controls naive T cell survival by regulating a programme of gene expression that includes IL-7Rα expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010). This paper shows that FOXO1, with a contribution from FOXO3, controls T Reg cell function at least partially through the control of CTLA4 expression. In addition, the experiments show that in the absence of FOXO1, TGFβ signalling does not inhibit T-bet expression and instead induces T H 1 cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Brent, M. M., Anand, R. & Marmorstein, R. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16, 1407–1416 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Obsil, T. & Obsilova, V. Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta 1813, 1946–1953 (2011).

    CAS  PubMed  Google Scholar 

  73. Fredericks, W. J. et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol. Cell. Biol. 15, 1522–1535 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bennicelli, J. L., Fredericks, W. J., Wilson, R. B., Rauscher, F. J. 3rd & Barr, F. G. Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene 11, 119–130 (1995).

    CAS  PubMed  Google Scholar 

  75. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235 (1993).

    CAS  PubMed  Google Scholar 

  76. So, C. W. & Cleary, M. L. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 101, 633–639 (2003).

    CAS  PubMed  Google Scholar 

  77. Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).

    CAS  PubMed  Google Scholar 

  78. Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone:DNA contacts by FoxO1. J. Biol. Chem. 282, 35583–35593 (2007).

    CAS  PubMed  Google Scholar 

  79. van der Vos, K. E. & Coffer, P. J. FOXO-binding partners: it takes two to tango. Oncogene 27, 2289–2299 (2008).

    CAS  PubMed  Google Scholar 

  80. Dengler, H. S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nature Immunol. 9, 1388–1398 (2008).

    CAS  Google Scholar 

  81. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).

    CAS  Google Scholar 

  82. Fabre, S. et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 181, 2980–2989 (2008).

    CAS  PubMed  Google Scholar 

  83. Gubbels Bupp, M. R. et al. T cells require Foxo1 to populate the peripheral lymphoid organs. Eur. J. Immunol. 39, 2991–2999 (2009).

    CAS  PubMed  Google Scholar 

  84. Yusuf, I. et al. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int. Immunol. 20, 671–681 (2008).

    CAS  PubMed  Google Scholar 

  85. Cao, Z., Sun, X., Icli, B., Wara, A. K. & Feinberg, M. W. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116, 4404–4414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nature Immunol. 11, 618–627 (2010). This paper reported that FOXO1 and FOXO3 are required for T Reg cell development and function, and may directly control the expression of Foxp3.

    CAS  Google Scholar 

  87. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fernandez de Mattos, S. et al. FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol. Cell. Biol. 24, 10058–10071 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Glauser, D. A. & Schlegel, W. The FoxO/Bcl-6/cyclin D2 pathway mediates metabolic and growth factor stimulation of proliferation in Min6 pancreatic β-cells. J. Recept. Signal Transduct. Res. 29, 293–298 (2009).

    CAS  PubMed  Google Scholar 

  90. Duy, C. et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 473, 384–388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  94. Vinuesa, C. G. & Cyster, J. G. How T cells earn the follicular rite of passage. Immunity 35, 671–680 (2011).

    CAS  PubMed  Google Scholar 

  95. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36, 374–387 (2012). In this study, the authors show that IL-12 promotes Tbx21 expression in vitro by inactivating FOXO1. FOXO1 binds to a site in the Eomes gene and affects EOMES expression. A loss of FOXO1 prevented memory CD8+ T cell reactivation.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dijkers, P. F. et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J. Cell. Biol. 156, 531–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. You, H. et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203, 1657–1663 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bosque, A. et al. The induction of Bim expression in human T cell blasts is dependent on non-apoptopic Fas/CD95 signalling. Blood 109, 1627–1635 (2006).

    PubMed  Google Scholar 

  100. Katayama, K., Nakamura, A., Sugimoto, Y., Tsuruo, T. & Fujita, N. FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression. Oncogene 27, 1677–1686 (2008).

    CAS  PubMed  Google Scholar 

  101. Ho, K. K., Myatt, S. S. & Lam, E. W. Many forks in the path: cycling with FoxO. Oncogene 27, 2300–2311 (2008).

    CAS  PubMed  Google Scholar 

  102. Gump, J. M. & Dowdy, S. F. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol. Med. 13, 443–448 (2007).

    CAS  PubMed  Google Scholar 

  103. Dabrowska, A., Kim, N. & Aldovini, A. Tat-induced FOXO3a is a key mediator of apoptosis in HIV-1-infected human CD4+ T lymphocytes. J. Immunol. 181, 8460–8477 (2008).

    CAS  PubMed  Google Scholar 

  104. Kim, N., Kukkonen, S., Gupta, S. & Aldovini, A. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLoS Pathog. 6, e1001103 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. van Grevenynghe, J. et al. Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nature Med. 14, 266–274 (2008).

    CAS  PubMed  Google Scholar 

  106. Riou, C. et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med. 204, 79–91 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

    CAS  PubMed  Google Scholar 

  108. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    CAS  PubMed  Google Scholar 

  109. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    CAS  PubMed  Google Scholar 

  110. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nature Immunol. 8, 359–368 (2007).

    CAS  Google Scholar 

  111. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunol. 10, 689–695 (2009).

    CAS  Google Scholar 

  112. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008). This paper shows that the AKT–mTOR pathway inhibits T Reg cell development and controls a subset of the T Reg cell gene expression signature, including CTLA4 expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pierau, M. et al. Protein kinase B/Akt signals impair Th17 differentiation and support natural regulatory T cell function and induced regulatory T cell formation. J. Immunol. 183, 6124–6134 (2009).

    CAS  PubMed  Google Scholar 

  116. Sakoe, Y., Sakoe, K., Kirito, K., Ozawa, K. & Komatsu, N. FOXO3A as a key molecule for all-trans retinoic acid-induced granulocytic differentiation and apoptosis in acute promyelocytic leukemia. Blood 115, 3787–3795 (2010).

    CAS  PubMed  Google Scholar 

  117. Turner, M. S., Kane, L. P. & Morel, P. A. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).

    CAS  PubMed  Google Scholar 

  118. Gottschalk, R. A., Corse, E. & Allison, J. P. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701–1711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. An, B. S. et al. Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol. Cell. Biol. 30, 4890–4900 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS  PubMed  Google Scholar 

  122. Jeffery, L. E. et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 183, 5458–5467 (2009).

    CAS  PubMed  Google Scholar 

  123. Ghoreishi, M. et al. Expansion of antigen-specific regulatory T cells with the topical vitamin d analog calcipotriol. J. Immunol. 182, 6071–6078 (2009).

    CAS  PubMed  Google Scholar 

  124. Brown, E. J. et al. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377, 441–446 (1995).

    CAS  PubMed  Google Scholar 

  125. Gingras, A. C., Kennedy, S. G., O'Leary, M. A., Sonenberg, N. & Hay, N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12, 502–513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005).

    CAS  PubMed  Google Scholar 

  129. Kang, J., Huddleston, S. J., Fraser, J. M. & Khoruts, A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J. Leukoc. Biol. 83, 1230–1239 (2008).

    CAS  PubMed  Google Scholar 

  130. Kopf, H., de la Rosa, G. M., Howard, O. M. & Chen, X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int. Immunopharmacol. 7, 1819–1824 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunol. 12, 295–303 (2011).

    CAS  Google Scholar 

  132. Cobbold, S. P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA 106, 12055–12060 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ouaked, N. et al. Regulation of the foxp3 gene by the Th1 cytokines: the role of IL-27-induced STAT1. J. Immunol. 182, 1041–1049 (2009).

    CAS  PubMed  Google Scholar 

  135. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Getnet, D. et al. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells. Mol. Immunol. 47, 1595–1600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Crellin, N. K., Garcia, R. V. & Levings, M. K. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109, 2014–2022 (2007).

    CAS  PubMed  Google Scholar 

  138. Bachmann, M. F., Kohler, G., Ecabert, B., Mak, T. W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  PubMed  Google Scholar 

  139. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 6, 345–352 (2005).

    CAS  Google Scholar 

  140. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  141. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nature Immunol. 10, 769–777 (2009).

    CAS  Google Scholar 

  142. Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1–mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nature Immunol. 11, 1047–1056 (2010).

    CAS  Google Scholar 

  143. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348 (2005).

    CAS  Google Scholar 

  144. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Linterman, M. A. & Vinuesa, C. G. Signals that influence T follicular helper cell differentiation and function. Semin. Immunopathol. 32, 183–196 (2010).

    CAS  PubMed  Google Scholar 

  146. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    CAS  PubMed  Google Scholar 

  147. Gigoux, M. et al. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 106, 20371–20376 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Rolf, J., Fairfax, K. & Turner, M. Signaling pathways in T follicular helper cells. J. Immunol. 184, 6563–6568 (2010).

    CAS  PubMed  Google Scholar 

  149. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nature Immunol. 13, 405–411 (2012).

    CAS  Google Scholar 

  150. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lefrancois, L. & Obar, J. J. Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunol. Rev. 235, 206–218 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Arens, R. & Schoenberger, S. P. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol. Rev. 235, 190–205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rutishauser, R. L. & Kaech, S. M. Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation. Immunol. Rev. 235, 219–233 (2010).

    CAS  PubMed  Google Scholar 

  154. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    CAS  PubMed  Google Scholar 

  155. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunol. 6, 1236–1244 (2005).

    CAS  Google Scholar 

  156. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kim, E. H. et al. Signal integration by Akt regulates CD8 T cell effector and memory differentiation. J. Immunol. 188, 4305–4314 (2012).

    CAS  PubMed  Google Scholar 

  159. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009). In this study, the authors show that inhibition of mTOR by rapamycin increases memory CD8+ T cell formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. 6, 1122–1128 (2004).

    CAS  PubMed  Google Scholar 

  162. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    CAS  PubMed  Google Scholar 

  163. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Allam, A. et al. The CD8+ memory T-cell state of readiness is actively maintained and reversible. Blood 114, 2121–2130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, M., Zhang, X., Zhao, H., Wang, Q. & Pan, Y. FoxO gene family evolution in vertebrates. BMC Evol. Biol. 9, 222 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. Jacobs, F. M. et al. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J. Biol. Chem. 278, 35959–35967 (2003).

    CAS  PubMed  Google Scholar 

  167. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  168. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl Acad. Sci. USA 101, 2975–2980 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Furuyama, T. et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279, 34741–34749 (2004).

    CAS  PubMed  Google Scholar 

  170. Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003).

    CAS  PubMed  Google Scholar 

  171. Simonis, M. et al. High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nature Methods 6, 837–842 (2009).

    CAS  PubMed  Google Scholar 

  172. de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    CAS  PubMed  Google Scholar 

  174. Biggs, W. H. Jr., Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Nakae, J., Park, B. C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    CAS  PubMed  Google Scholar 

  176. Tsai, W. B., Chung, Y. M., Takahashi, Y., Xu, Z. & Hu, M. C. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nature Cell Biol. 10, 460–467 (2008).

    CAS  PubMed  Google Scholar 

  177. Yalcin, S. et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J. Biol. Chem. 283, 25692–25705 (2008).

    CAS  PubMed  Google Scholar 

  178. Khatri, S., Yepiskoposyan, H., Gallo, C. A., Tandon, P. & Plas, D. R. FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. J. Biol. Chem. 285, 15960–15965 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Yang, W., Dolloff, N. G. & El-Deiry, W. S. ERK and MDM2 prey on FOXO3a. Nature Cell Biol. 10, 125–126 (2008).

    CAS  PubMed  Google Scholar 

  180. Wang, M. C., Bohmann, D. & Jasper, H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121, 115–125 (2005).

    CAS  PubMed  Google Scholar 

  181. Choi, J. et al. Mst1-FoxO signaling protects naive T lymphocytes from cellular oxidative stress in mice. PLoS ONE 4, e8011 (2009).

    PubMed  PubMed Central  Google Scholar 

  182. Chapuis, N. et al. IκB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood 116, 4240–4250 (2010).

    CAS  PubMed  Google Scholar 

  183. Matsuzaki, H. et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl Acad. Sci. USA 102, 11278–11283 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Arimoto-Ishida, E. et al. Inhibition of phosphorylation of a forkhead transcription factor sensitizes human ovarian cancer cells to cisplatin. Endocrinology 145, 2014–2022 (2004).

    CAS  PubMed  Google Scholar 

  185. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. R. Beisner, A. S. Dejean, and Y. M. Kerdiles for contributing to this work with their many experimental and conceptual insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Hedrick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Stephen M. Hedrick's homepage

Glossary

Tumour suppressor proteins

Proteins that limit the generation of cancer. Many of these proteins regulate scheduled entry to the cell cycle or promote the apoptosis of damaged cells. Loss-of-function mutations in tumour suppressor genes increase susceptibility to cancer.

Reactive oxygen species

Highly reactive oxygen-containing molecules that can be produced by the mitochondria in eukaryotic cells. Examples include hydrogen peroxide, ions such as hypochlorite, and free radicals such as superoxide and nitric oxide. They can be inactivated by enzymes such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase.

mTORC2

(Mammalian target of rapamycin complex 2). A complex consisting of: mammalian target of rapamycin (mTOR); rapamycin-insensitive companion of mTOR (RICTOR); mammalian stress-activated MAP kinase-interacting protein 1 (mSIN1; also known as MAPKAP1); protein observed with RICTOR 1 (PROTOR1); PROTOR2; DEP domain-containing mTOR-interacting protein (DEPTOR); and mLST8 (also known as GβL).

MDM2

An E3 ubiquitin ligase that can cause the proteasomal degradation of p53 as well as of other tumour suppressor proteins such as FOXO3.

MicroRNAs

(miRNAs). Non-coding RNA molecules that provide recognition for the RNA-induced silencing complex (RISC), which has inhibitory effects on transcription and/or translation. This large, multisubunit, nucleoprotein complex includes DICER, which is essential for processing precursor RNA molecules, and Argonaute, which is central to silencing.

T follicular helper cells

(TFH cells). CD4+ T cells that migrate to the B cell-rich follicles in an active immune response and provide helper functions that promote the differentiation of B cells into antibody-producing cells. They are variously described as a separate T cell subset or a further differentiation of TH1, TH2 and TH17 cells.

CTLL cell line

A T cell line that grows indefinitely in the presence of interleukin-2 (IL-2) with no requirement for stimulation through the T cell receptor (TCR). This is not a feature of freshly explanted T cells, which require a cycle of TCR and IL-2 stimulation followed by rest before re-stimulation.

Electrophoretic mobility shift assay

(EMSA). An assay used to measure DNA–protein interactions. Short stretches of double-stranded, radio-labelled DNA are mixed with nuclear extracts and subjected to sizing by gel electrophoresis. In the presence of bound proteins, the labelled DNA will migrate more slowly. To determine the identity of the bound proteins, specific antibodies can be added to see whether the migration of the complex is altered — either becoming even slower ('supershifted') or being prevented altogether.

Chromatin immunoprecipitation

(ChIP). An assay used to determine whether specific transcription factors are bound to chromatin. DNA–protein complexes are stabilized by reversible crosslinking, the DNA is sheared to an average size of about 500 bp, an antibody specific for a suspected chromatin-associated factor is used to carry out immunoprecipitation, and the complexes are isolated. Following dissolution of the crosslinks and protein digestion, PCR is used to determine whether specific DNA sequences were co-isolated. A positive signal using appropriate controls indicates that a given factor is within proximity (about 500 bp) of the primers used to amplify the DNA.

ChIP–seq

An assay similar to chromatin immunoprecipitation (ChIP) with the exception that the immunoprecipitated DNA is modified by the addition of coded oligonucleotides, and the resulting libraries of DNA are sequenced using massively parallel sequencing techniques.

mRNA sequencing

In this technique, poly(A)-containing mRNA isolated by hydridization to oligo-dT columns may be fragmented and is then converted to complementary DNA (cDNA) using the enzyme reverse transcriptase. The cDNA is then prepared for parallel sequencing. The number of sequencing reads specific for each gene correlates with mRNA abundance. Information can also be obtained pertaining to alternative splicing or transcriptional start isoforms of each gene. This technique yields accurate and abundant data, and is rapidly superseding microarray technologies.

3C techniques

Chromosome conformation capture (3C) is used to determine whether a distal enhancer sequence is in proximity to a promoter in a given state of a particular cell type. The basic concept is that DNA–protein and protein–protein interactions in the nucleus are reversibly crosslinked to stabilize interacting regions of DNA. The DNA is digested to completion with a restriction enzyme, and intramolecular ligation is carried out to link promoter and enhancer sequences. The resulting complex can be analysed by sequencing in several ways to identify known or unknown interacting regulatory elements.

mTORC1

(Mammalian target of rapamycin complex 1). A complex consisting of: mammalian target of rapamycin (mTOR), which is a serine/threonine kinase; regulatory-associated protein of mTOR (RAPTOR); proline-rich AKT substrate of 40 kDa (PRAS40), which is an mTORC1 inhibitor; mLST8 (also known as GβL), which is of unknown function; and DEP domain-containing mTOR-interacting protein (DEPTOR), which is an mTOR inhibitor.

CNS3 enhancer

One of four DNA regulatory regions in the Foxp3 gene (together with the promoter, CNS1 and CNS2) that was initially defined by histone modifications that are permissive for transcription. CNS1, CNS2 and CNS3 were then analysed for activity by generating mice with deletions spanning each region of the chromosome.

Cd4Cre Foxo1f/f mice

Mice in which both alleles of the Foxo1 gene are modified to include loxP sites flanking exon 2 and in which the Cre recombinase gene from the P1 bacteriophage is expressed from a transgene using control elements of the Cd4 gene. In such mice, the Foxo1 gene is inactivated in the T cell lineage during the CD4+CD8+ stage of thymic development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedrick, S., Michelini, R., Doedens, A. et al. FOXO transcription factors throughout T cell biology. Nat Rev Immunol 12, 649–661 (2012). https://doi.org/10.1038/nri3278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing