Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TLR-dependent T cell activation in autoimmunity

Key Points

  • Toll-like receptors (TLRs) are members of the pattern recognition receptor (PRR) family. They sense pathogen-derived molecules termed pathogen-associated molecular patterns (PAMPs), as well as endogenous molecules termed damage-associated molecular patterns (DAMPs) that are released from dead and dying cells. Activation of TLR signalling pathways in innate immune cells, such as dendritic cells (DCs), drives adaptive immunity by enhancing the ability of DCs to act as antigen-presenting cells and promoting the production of pro-inflammatory cytokines that direct the induction of different T cell subtypes.

  • Autoimmune diseases can develop as a result of a breakdown in immune tolerance that leads to the activation of autoantigen-specific T cells. Self-reactive T cells that secrete interleukin-17 (TH17 cells), interferon-γ (TH1 cells) or both cytokines mediate inflammatory pathology in many autoimmune diseases.

  • Infectious pathogens and the gut microbiota have been implicated in precipitating or exacerbating autoimmune diseases in humans. Studies in mouse models and with tissues from patients with autoimmune diseases have suggested that PAMPs may promote innate and consequently adaptive immune responses that promote inflammation and tissue damage.

  • The release of endogenous DAMPs from host cells that have been killed as a result of damage or infection with pathogens can activate innate immune responses, driving sterile inflammation that initiates or exacerbates pathology in autoimmune diseases.

  • Inhibition of agonist binding to TLRs or downstream signalling pathways is a promising approach for the development of therapies for inflammatory and autoimmune diseases.

Abstract

Autoimmune disease can develop as a result of a breakdown in immunological tolerance, leading to the activation of self-reactive T cells. There is an established link between infection and human autoimmune diseases. Furthermore, experimental autoimmune diseases can be induced by autoantigens that are administered together with complete Freund's adjuvant, which contains killed Mycobacterium tuberculosis; in some cases, these bacteria can be replaced by individual pathogen-associated molecular patterns (PAMPs). Exogenous PAMPs and endogenous danger signals from necrotic cells bind to pattern recognition receptors (including Toll-like receptors) and activate signalling pathways in innate immune cells and in T cells. This leads to pro-inflammatory cytokine production and T cell activation, which are now considered to be major factors in the development of autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterium-induced signalling in innate immune cells leads to cytokine production that promotes the activation of T cells.
Figure 2: Effector cells and drug targets in autoimmunity.
Figure 3: Indirect and direct activation of T cells by TLR agonists.
Figure 4: PAMP-, DAMP- and MAMP-mediated activation of autoimmune responses.

Similar content being viewed by others

References

  1. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Mills, K. H. Induction, function and regulation of IL-17-producing T cells. Eur. J. Immunol. 38, 2636–2649 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunol. 11, 7–13 (2010).

    Article  CAS  Google Scholar 

  4. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hennessy, E. J., Parker, A. E. & O'Neill, L. A. Targeting Toll-like receptors: emerging therapeutics? Nature Rev. Drug Discov. 9, 293–307 (2010).

    Article  CAS  Google Scholar 

  6. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009). The first report that γδ T cells promote autoimmune inflammation by providing a source of innate IL-17 and IL-21.

    Article  CAS  PubMed  Google Scholar 

  7. van Beelen, A. J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669 (2007). The first report that sensing of PAMPs through NLRs promotes the development of human T H 17 cells.

    Article  CAS  PubMed  Google Scholar 

  8. Lalor, S. J. et al. Caspase-1-processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J. Immunol. 186, 5738–5748 (2011). This study defined a role for PAMP-induced IL-18 and IL-1 in driving IL-17 production by CD4+ and γδ T cells that are pathogenic in autoimmune diseases.

    Article  CAS  PubMed  Google Scholar 

  9. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). This study demonstrated that certain strains of commensal bacteria promote the induction of T H 17 cells in the intestine, suggesting that the microbiota may precipitate autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prinz, M. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 116, 456–464 (2006). This study demonstrated that signalling through MYD88 and TLR9 is required to promote the innate cytokines that drive the induction of T H 17 cells in experimental autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008). This study demonstrated that TLR4 may be an important drug target for rheumatoid arthritis; activation of TLR4 by the microbiota promoted the generation of T cells that were pathogenic in an arthritis model, and disease was blocked using a TLR4 antagonist.

    Article  CAS  PubMed  Google Scholar 

  12. Brereton, C. F., Sutton, C. E., Lalor, S. J., Lavelle, E. C. & Mills, K. H. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease. J. Immunol. 183, 1715–1723 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Jarnicki, A. G. et al. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J. Immunol. 180, 3797–3806 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Conroy, H., Marshall, N. A. & Mills, K. H. TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene 27, 168–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Higgins, S. C. & Mills, K. H. TLR, NLR agonists, and other immune modulators as infectious disease vaccine adjuvants. Curr. Infect. Dis. Rep. 12, 4–12 (2010).

    Article  PubMed  Google Scholar 

  16. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  22. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  23. Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Rachitskaya, A. V. et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180, 5167–5171 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy, A. C., Lalor, S. J., Lynch, M. A. & Mills, K. H. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24, 641–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Park, Y., Park, S., Yoo, E., Kim, D. & Shin, H. Association of the polymorphism for Toll-like receptor 2 with type 1 diabetes susceptibility. Ann. NY Acad. Sci. 1037, 170–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Hong, J. et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. J. Gastroenterol. Hepatol. 22, 1760–1766 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. van Heel, D. A. et al. Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn's disease. Gut 54, 1553–1557 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamradt, T., Goggel, R. & Erb, K. J. Induction, exacerbation and inhibition of allergic and autoimmune diseases by infection. Trends Immunol. 26, 260–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Serafini, B. et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buljevac, D. et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125, 952–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Correale, J., Fiol, M. & Gilmore, W. The risk of relapses in multiple sclerosis during systemic infections. Neurology 67, 652–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Saal, J. G. et al. Persistence of B19 parvovirus in synovial membranes of patients with rheumatoid arthritis. Rheumatol. Int. 12, 147–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Saal, J. G. et al. Synovial Epstein-Barr virus infection increases the risk of rheumatoid arthritis in individuals with the shared HLA-DR4 epitope. Arthritis Rheum. 42, 1485–1496 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729–1737 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Feng, T., Wang, L., Schoeb, T. R., Elson, C. O. & Cong, Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 207, 1321–1332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herrmann, I. et al. Streptococcus pneumoniae infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect. Immun. 74, 4841–4848 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schrijver, I. A., Melief, M. J., Tak, P. P., Hazenberg, M. P. & Laman, J. D. Antigen-presenting cells containing bacterial peptidoglycan in synovial tissues of rheumatoid arthritis patients coexpress costimulatory molecules and cytokines. Arthritis Rheum. 43, 2160–2168 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Klasen, I. S. et al. The presence of peptidoglycan–polysaccharide complexes in the bowel wall and the cellular responses to these complexes in Crohn's disease. Clin. Immunol. Immunopathol. 71, 303–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Visser, L. et al. Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. Am. J. Pathol. 169, 1671–1685 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schrijver, I. A. et al. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain 124, 1544–1554 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Bsibsi, M., Ravid, R., Gveric, D. & van Noort, J. M. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Rajan, N. & Langtry, J. A. Generalized exacerbation of psoriasis associated with imiquimod cream treatment of superficial basal cell carcinomas. Clin. Exp. Dermatol. 31, 140–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  48. Maizels, R. M. & Yazdanbakhsh, M. T-cell regulation in helminth parasite infections: implications for inflammatory diseases. Chem. Immunol. Allergy 94, 112–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Strachan, D. P. Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax 55, S2–S10 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Walsh, K. P., Brady, M. T., Finlay, C. M., Boon, L. & Mills, K. H. Infection with a helminth parasite attenuates autoimmunity through TGF-β-mediated suppression of Th17 and Th1 responses. J. Immunol. 183, 1577–1586 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Ochoa-Reparaz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol. 4, 469–478 (2004).

    Article  CAS  Google Scholar 

  53. Oppenheim, J. J. & Yang, D. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17, 359–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Li, J. et al. Expression of high mobility group box chromosomal protein 1 and its modulating effects on downstream cytokines in systemic lupus erythematosus. J. Rheumatol. 37, 766–775 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nature Med. 13, 851–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Farez, M. F. et al. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nature Immunol. 10, 958–964 (2009).

    Article  CAS  Google Scholar 

  59. Sacre, S. M. et al. The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am. J. Pathol. 170, 518–525 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoffmann, M. H. et al. Nucleic acid-stimulated antigen-presenting cells trigger T cells to induce disease in a rat transfer model of inflammatory arthritis. J. Autoimmun. 36, 288–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Marta, M., Andersson, A., Isaksson, M., Kampe, O. & Lobell, A. Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur. J. Immunol. 38, 565–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Reynolds, J. M. et al. Toll-like receptor 2 signaling in CD4+ T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 32, 692–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ichikawa, H. T., Williams, L. P. & Segal, B. M. Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J. Immunol. 169, 2781–2787 (2002). This study demonstrated that innate immune cell activation and IL-12 induction through TLR9 induces T cells that are pathogenic in EAE.

    Article  CAS  PubMed  Google Scholar 

  64. Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Touil, T., Fitzgerald, D., Zhang, G. X., Rostami, A. & Gran, B. Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-β. J. Immunol. 177, 7505–7509 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Onta, T. et al. Induction of acute arthritis in mice by peptidoglycan derived from Gram-positive bacteria and its possible role in cytokine production. Microbiol. Immunol. 37, 573–582 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Frasnelli, M. E., Tarussio, D., Chobaz-Peclat, V., Busso, N. & So, A. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res. Ther. 7, R370–R379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ronaghy, A. et al. Immunostimulatory DNA sequences influence the course of adjuvant arthritis. J. Immunol. 168, 51–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Abdollahi-Roodsaz, S. et al. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum. 56, 2957–2967 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Su, S. B. et al. Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J. Immunol. 175, 6303–6310 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, H. S. et al. Toll-like receptor 2 senses β-cell death and contributes to the initiation of autoimmune diabetes. Immunity 27, 321–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Summers, S. A. et al. Toll-like receptor 2 induces Th17 myeloperoxidase autoimmunity while Toll-like receptor 9 drives Th1 autoimmunity in murine vasculitis. Arthritis Rheum. 63, 1124–1135 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Evans, H. G., Suddason, T., Jackson, I., Taams, L. S. & Lord, G. M. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc. Natl Acad. Sci. USA 104, 17034–17039 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Higgins, S. C., Jarnicki, A. G., Lavelle, E. C. & Mills, K. H. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J. Immunol. 177, 7980–7989 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  77. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 8, 630–638 (2007).

    Article  CAS  Google Scholar 

  78. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tigno-Aranjuez, J. T., Jaini, R., Tuohy, V. K., Lehmann, P. V. & Tary-Lehmann, M. Encephalitogenicity of complete Freund's adjuvant relative to CpG is linked to induction of Th17 cells. J. Immunol. 183, 5654–5661 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Waldner, H., Collins, M. & Kuchroo, V. K. Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J. Clin. Invest. 113, 990–997 (2004). This study demonstrated that activation of APCs with a TLR9 agonist can promote self-reactive T cells that mediate autoimmunity in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Veldhoen, M., Hocking, R. J., Flavell, R. A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nature Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  82. Hansen, B. S., Hussain, R. Z., Lovett-Racke, A. E., Thomas, J. A. & Racke, M. K. Multiple Toll-like receptor agonists act as potent adjuvants in the induction of autoimmunity. J. Neuroimmunol. 172, 94–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, Y., Huang, C. T., Huang, X. & Pardoll, D. M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nature Immunol. 5, 508–515 (2004).

    Article  CAS  Google Scholar 

  86. Kubo, T. et al. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J. Immunol. 173, 7249–7258 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. den Haan, J. M., Kraal, G. & Bevan, M. J. Cutting edge: lipopolysaccharide induces IL-10-producing regulatory CD4+ T cells that suppress the CD8+ T cell response. J. Immunol. 178, 5429–5433 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Imanishi, T. et al. Cutting edge: TLR2 directly triggers Th1 effector functions. J. Immunol. 178, 6715–6719 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Marsland, B. J. et al. TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-θ signaling and promote autoimmune myocarditis. J. Immunol. 178, 3466–3473 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Melzer, N., Meuth, S. G. & Wiendl, H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J. 23, 3659–3673 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Wong, C. K. et al. Activation profile of Toll-like receptors of peripheral blood lymphocytes in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 159, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hornung, V. et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Cottalorda, A. et al. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur. J. Immunol. 36, 1684–1693 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K. & O'Brien, R. L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol. 20, 353–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Caramalho, I. et al. Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Crellin, N. K. et al. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J. Immunol. 175, 8051–8059 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, H., Komai-Koma, M., Xu, D. & Liew, F. Y. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 103, 7048–7053 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fort, M. M. et al. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J. Immunol. 174, 6416–6423 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Ungaro, R. et al. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1167–G1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mullarkey, M. et al. Inhibition of endotoxin response by E5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J. Pharmacol. Exp. Ther. 304, 1093–1102 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Eisai Co., Ltd. Phase III study for severe sepsis treatment eritoran (E5564) does not meet primary endpoint. Eisai Co., Ltd.[online], (2011).

  104. Arslan, F. et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic Toll-like receptor-2 and reduced by systemic administration of a novel anti-Toll-like receptor-2 antibody. Circulation 121, 80–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Lazzaro, B. P. & Rolff, J. Immunology. Danger, microbes, and homeostasis. Science 332, 43–44 (2011).

    Article  PubMed  Google Scholar 

  106. Leonardi, C. L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. US Food and Drug Administration. FDA briefing document: supplemental BLA 125319. FDA [online], (2011).

  108. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Vermeire, K. et al. Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J. Immunol. 158, 5507–5513 (1997).

    CAS  PubMed  Google Scholar 

  110. Krakowski, M. & Owens, T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V. & Segal, B. M. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205, 799–810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Panitch, H. S., Hirsch, R. L., Haley, A. S. & Johnson, K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1, 893–895 (1987).

    Article  CAS  PubMed  Google Scholar 

  117. Masters, S. L. et al. Regulation of interleukin-1β by interferon-γ is species specific, limited by suppressor of cytokine signalling 1 and influences interleukin-17 production. EMBO Rep. 11, 640–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fang, J. et al. The role of TLR2, TRL3, TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal autoimmunity model. Invest. Ophthalmol. Vis. Sci. 51, 3092–3099 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yoshino, S., Sasatomi, E. & Ohsawa, M. Bacterial lipopolysaccharide acts as an adjuvant to induce autoimmune arthritis in mice. Immunology 99, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Kingston Mills is supported by Science Foundation Ireland, The Irish Health Research Board and Enterprise Ireland. I am grateful to J. Fletcher, C. Sutton and R. Higgs for helpful discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Kingston Mills is a co-founder and shareholder in Opsona Therapeutics Ltd and TriMod Therapeutics Ltd, which are university spin-out companies involved in the development of immunotherapeutics.

Related links

Related links

FURTHER INFORMATION

Kingston H. G Mills's homepage

Glossary

Microorganism-associated molecular patterns

(MAMPs). Molecular patterns that are found in pathogens and commensal microorganisms but not in mammalian cells.

Damage-associated molecular patterns

(DAMPs). Molecular patterns that are found in mammalian cells and are released as a result of cellular stress, cellular damage or non-physiological cell death. Examples include hyaluronate (which is released from the degraded stroma); HMGB1 (which is released from the nucleus); and ATP, uric acid, S100 calcium-binding proteins and heat-shock proteins (which are released from the cytosol). Such DAMPs are thought to elicit local inflammatory reactions.

Pathogen-associated molecular patterns

(PAMPs). Molecular patterns that are found in pathogens but not in mammalian cells. Examples include terminally mannosylated and polymannosylated compounds (which bind the mannose receptor) and various microbial components, such as bacterial lipopolysaccharide, hypomethylated DNA, flagellin and double-stranded RNA (all of which bind Toll-like receptors).

Sterile inflammation

Inflammation, characterized by leukocyte recruitment, that does not involve infection but is precipitated by the activation of innate immune cells by endogenous mediators (alarmins or DAMPs) that are released from host cells following tissue injury and necrotic cell death.

NLRP3 inflammasome

(Nucleotide-binding oligomerization domain-, leucine rich repeat- and pyrin domain-containing 3 inflammasome). The NLRP proteins are a family of cytoplasmic proteins that can form high molecular weight signalling complexes, termed inflammasomes. The NLRP3 inflammasome contains the adaptor molecule ASC and recruits pro-caspase 1, which is then activated by autocatalytic cleavage. Active caspase 1 catalyses the cleavage of pro-IL-1β, pro-IL-18 and pro-IL-33, resulting in the secretion of biologically active forms of these cytokines. The NLRP3 inflammasome mediates innate immune responses to exogenous bacteria, environmental molecules (such as alum and asbestos) and endogenous molecules (such as ATP and amyloid-β).

Lymphoid tissue inducer-like cells

Innate lymphoid cells that constitutively express CD4, RORγt, the IL-23 receptor, the aryl hydrocarbon receptor and CCR6, but not CD3, NK1.1, CD11b, GR1, CD11c or B220. These cells are found in the spleen and the lamina propria and are an early source of IL-17 and IL-22 in host defence and an important source of IL-22 in intestinal homeostasis.

Specific pathogen free conditions

(SPF conditions). Vivarium conditions for rodents in which an increasing number of pathogens are excluded or eradicated from the colony. These animals are maintained in the absence of most of the known chronic and latent persistent pathogens. Although this enables better control of experimental conditions related to immunity and infection, it also sets apart such animal models from pathogen-exposed humans or non-human primates, whose immune systems are in constant contact with infectious agents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, K. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11, 807–822 (2011). https://doi.org/10.1038/nri3095

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing