TUMOUR IMMUNOLOGY

TSLP drives human tumour progression

Chronic inflammation associated with CD4⁺ T helper 2 (T_H 2) cell polarization can promote cancer progression. Two independent studies report that thymic stromal lymphopoietin (TSLP) expression in the tumour microenvironment contributes to tumour growth following intratumoural T_H 2 cell differentiation.

TSLP induces inflammatory $T_{H}2$ cells — which produce interleukin-13 (IL-13) and tumour necrosis factor (TNF) but no IL-10 through myeloid dendritic cell (DC) activation. De Monte et al. showed that stimulation of human pancreatic cancer-associated fibroblasts (CAFs) with tumour-derived factors, such as TNF and IL-1 β , results in increased secretion of TSLP, whereas Pedroza-Gonzalez et al. report constitutive TSLP production by human breast cancer cells. TSLP-containing supernatant from pancreatic CAFs induced high expression of the TSLP receptor and T..2-type chemoattractants by myeloid DCs. Moreover, myeloid DCs treated with breast cancer tumour supernatant exhibited an activated phenotype and drove inflammatory T_H2 cell differentiation in an OX40 ligand-dependent manner. Using a TSLP-specific neutralizing antibody, the two groups demonstrated that tumour-derived TSLP directly affects the ability of myeloid DCs to prime inflammatory T_H2 cells.

Interestingly, the phenotype of myeloid DCs that infiltrate pancreatic or breast cancer tumours was found to be similar to that of in vitro TSLP-treated myeloid DCs, suggesting a TSLP-mediated mechanism of inflammatory T_H2 cell differentiation in cancer. This is of physiological relevance, as an increase in the ratio of T_{H}^{2} to T_{H}^{1} cells in the pancreatic tumour stroma was shown to be associated with disease progression. Furthermore, using humanized mice with breast cancer tumours, Pedroza-Gonzalez et al. demonstrated that the administration of antibodies that neutralize TSLP or its receptor decreases the secretion of T_u2 cell-associated cytokines by tumour-infiltrating T cells and blocks tumour growth.

Thus, these two studies identify a role for TSLP in tumour progression through the activation of a myeloid DC-induced inflammatory $T_{\rm H}2$ cell response. Based on their findings, the authors suggest that targeting TSLP or its receptor may be of therapeutic value in the treatment of pancreatic or breast cancer.

Maria Papatriantafyllou

ORIGINAL RESEARCH PAPERS Pedroza-

Gonzalez, A. et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J. Exp. Med. 21 Feb 2011 (doi:10.1084/jem.20102131) | De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med. 21 Feb 2011 (doi:10.1084/jem.20101876)

