Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic views of STAT function in CD4+ T helper cell differentiation

Key Points

  • Signal transducer and activator of transcription (STAT) proteins have crucial immunoregulatory functions, and are particularly important for T helper cell differentiation.

  • Chromatin immunoprecipitation followed by next-generation sequencing (ChIP–seq) analysis has mapped the DNA binding sites of transcription factors such as STATs on a genome-wide scale.

  • ChIP–seq technology also allows researchers to gain a genomic view of the histone epigenetic modifications that constitute the 'epigenome'.

  • Genomic approaches enable us to link transcription factor binding with epigenomic modifications and gene expression to comprehensively evaluate the regulation of these activities.

  • Genome-wide association studies have linked STAT genes and STAT-mediated cytokine signalling pathways to multiple immune deficiency and autoimmune disorders.

  • Further applications of next-generation sequencing technologies include mapping of the DNA methylome, nucleosome positioning and DNase I hypersensitive sites, as well as profiling of the transcriptome (using RNA-seq) and microRNAs, underscoring the versatility of this powerful tool.

Abstract

Signal transducer and activator of transcription (STAT) proteins are well known for their essential roles in transmitting cytokine-mediated signals and specifying T helper (TH) cell differentiation. Recent technological advances have revealed that STAT proteins have broad and complex roles in gene regulation and epigenetic control, including important roles as functional repressors. However, the challenge of how to link signal transduction, nucleosome biology and gene regulation remains. The relevance of tackling this problem is highlighted by genome-wide association studies that link cytokine signalling and STATs to various autoimmune or immune deficiency disorders. Defining exactly how extrinsic signals control the specification and plasticity of TH cells will provide important insights and perhaps therapeutic opportunities in these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental flow of ChIP–seq analysis.
Figure 2: Distinctive epigenetic patterns are formed by STAT proteins in differentiated T helper effector cells.
Figure 3: The STAT6 signalling network map identified during the initial TH2 cell differentiation stage.
Figure 4: Markers of genomic organization to define activities of chromosome regions.

Similar content being viewed by others

References

  1. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunol. 9, 1341–1346 (2008).

    Article  CAS  Google Scholar 

  6. Locksley, R. M. Nine lives: plasticity among T helper cell subsets. J. Exp. Med. 206, 1643–1646 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wolk, K., Witte, E., Witte, K., Warszawska, K. & Sabat, R. Biology of interleukin-22. Semin. Immunopathol. 32, 17–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, D., Batten, M., Mackay, C. R. & King, C. Lineage specification and heterogeneity of T follicular helper cells. Curr. Opin. Immunol. 21, 619–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Fazilleau, N., Mark, L., McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Follicular helper T cells: lineage and location. Immunity 30, 324–335 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Levy, D. E. & Darnell, J. E. Jr. STATs: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  12. Shuai, K., Stark, G. R., Kerr, I. M. & Darnell, J. E. Jr. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science 261, 1744–1746 (1993). One of the first reports to define the importance of STAT1 in interferon signalling.

    Article  CAS  PubMed  Google Scholar 

  13. Schindler, C. & Darnell, J. E. Jr. Transcriptional responses to polypeptide ligands: the JAK–STAT pathway. Annu. Rev. Biochem. 64, 621–651 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Leonard, W. J. & O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Hoey, T. et al. Distinct requirements for the naturally occurring splice forms Stat4α and Stat4β in IL-12 responses. EMBO J. 22, 4237–4248 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen, Z. et al. Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. J. Immunol. 171, 3627–3635 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lund, R. J., Chen, Z., Scheinin, J. & Lahesmaa, R. Early target genes of IL-12 and STAT4 signaling in Th cells. J. Immunol. 172, 6775–6782 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Tuomela, S., Rautajoki, K. J., Moulder, R., Nyman, T. A. & Lahesmaa, R. Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics 9, 1087–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Mardis, E. R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402 (2008). This review compares and discusses the basic chemistries used by currently available next-generation sequencing platforms.

    Article  CAS  PubMed  Google Scholar 

  20. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature Biotech. 26, 1135–1145 (2008).

    Article  CAS  Google Scholar 

  21. Natoli, G. Maintaining cell identity through global control of genomic organization. Immunity 33, 12–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Heintzman, N. D. & Ren, B. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 19, 541–549 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007). One of the first epigenome mapping studies to report genome-wide distribution of 20 histone modification marks.

    CAS  PubMed  Google Scholar 

  26. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Mohammad, H. P. & Baylin, S. B. Linking cell signaling and the epigenetic machinery. Nature Biotech. 28, 1033–1038 (2010).

    Article  CAS  Google Scholar 

  28. Liefke, R. et al. Histone demethylase KDM5A is an integral part of the core Notch–RBP-J repressor complex. Genes Dev. 24, 590–601 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhang, X., Edwards, J. P. & Mosser, D. M. Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J. Immunol. 177, 1282–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunol. 10, 1000–1007 (2009).

    Article  CAS  Google Scholar 

  31. Hegazy, A. N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009). The presence of bivalent epigenetic marks on transcription factor genes noted in this study helps to explain emerging views of T H cell plasticity.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    CAS  PubMed  Google Scholar 

  34. Wang, Z., Schones, D. E. & Zhao, K. Characterization of human epigenomes. Curr. Opin. Genet. Dev. 19, 127–134 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Robertson, A. G. et al. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res. 18, 1906–1917 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Auerbach, R. K. et al. Mapping accessible chromatin regions using Sono-Seq. Proc. Natl Acad. Sci. USA 106, 14926–14931 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kaplan, M. H. STAT4: a critical regulator of inflammation in vivo. Immunol. Res. 31, 231–242 (2005). An excellent review that summarizes the function of STAT4 in immune responses.

    Article  CAS  PubMed  Google Scholar 

  39. Uemura, A. et al. Natural killer cell is a major producer of interferon γ that is critical for the IL-12-induced anti-tumor effect in mice. Cancer Immunol. Immunother. 59, 453–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Miyagi, T. et al. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J. Exp. Med. 204, 2383–2396 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Good, S. R. et al. Temporal induction pattern of STAT4 target genes defines potential for Th1 lineage-specific programming. J. Immunol. 183, 3839–3847 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Wei, L. et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 32, 840–851 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nature Rev. Immunol. 10, 170–181 (2010).

    Article  CAS  Google Scholar 

  44. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol. 8, 967–974 (2007).

    Article  CAS  Google Scholar 

  46. Wei, L., Laurence, A., Elias, K. M. & O'Shea, J. J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Spolski, R. & Leonard, W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2007).

    Article  CAS  Google Scholar 

  48. Schmitt, N. et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31, 158–169 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gil, M. P. et al. Biologic consequences of Stat1-independent IFN signaling. Proc. Natl Acad. Sci. USA 98, 6680–6685 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramana, C. V. et al. Stat1-independent regulation of gene expression in response to IFN-γ. Proc. Natl Acad. Sci. USA 98, 6674–6679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walker, S. R., Nelson, E. A. & Frank, D. A. STAT5 represses BCL6 expression by binding to a regulatory region frequently mutated in lymphomas. Oncogene 26, 224–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Tran, T. H. et al. Prolactin inhibits BCL6 expression in breast cancer through a Stat5a-dependent mechanism. Cancer Res. 70, 1711–1721 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhang, Q. et al. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl Acad. Sci. USA 102, 6948–6953 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi, S. et al. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nature Cell Biol. 10, 489–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, J., Guo, L., Watson, C. J., Hu-Li, J. & Paul, W. E. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J. Immunol. 166, 7276–7281 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Elo, L. L. et al. Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human TH2 cell programming. Immunity 32, 852–862 (2010). The first report to show genome-wide binding of STAT6 in human T H 2 cells.

    Article  CAS  PubMed  Google Scholar 

  60. Collins, A., Littman, D. R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nature Rev. Immunol. 9, 106–115 (2009).

    Article  CAS  Google Scholar 

  61. Komine, O. et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J. Exp. Med. 198, 51–61 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer. J. Exp. Med. 204, 1749–1755 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kitoh, A. et al. Indispensable role of the Runx1–Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31, 609–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nature Immunol. 9, 1297–1306 (2008).

    Article  CAS  Google Scholar 

  65. Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nature Immunol. 9, 1288–1296 (2008).

    Article  CAS  Google Scholar 

  69. Takatori, H. et al. Stat5a inhibits IL-12-induced Th1 cell differentiation through the induction of suppressor of cytokine signaling 3 expression. J. Immunol. 174, 4105–4112 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Murray, P. J. The JAK–STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Akira, S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 19, 2607–2611 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA 103, 8137–8142 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Mathur, A. N. et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J. Immunol. 178, 4901–4907 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Nishihara, M. et al. IL-6–gp130–STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int. Immunol. 19, 695–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Harris, T. J. et al. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, X., Lee, Y. S., Yu, C. R. & Egwuagu, C. E. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J. Immunol. 180, 6070–6076 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, X., Ghoreschi, K., O'Shea, J. J. & Laurence, A. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunol. 12, 247–254 (2011).

    Article  CAS  Google Scholar 

  81. Akimzhanov, A. M., Yang, X. O. & Dong, C. Chromatin remodeling of interleukin-17 (IL-17)–IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282, 5969–5972 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunol. 8, 958–966 (2007).

    Article  CAS  Google Scholar 

  86. Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature Immunol. 10, 167–175 (2009).

    Article  CAS  Google Scholar 

  87. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunol. 10, 314–324 (2009).

    Article  CAS  Google Scholar 

  89. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31, 941–952 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Takeda, K. et al. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J. Immunol. 161, 4652–4660 (1998).

    CAS  PubMed  Google Scholar 

  91. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Liu, X., Robinson, G. W., Gouilleux, F., Groner, B. & Hennighausen, L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl Acad. Sci. USA 92, 8831–8835 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grimley, P. M., Dong, F. & Rui, H. Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev. 10, 131–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H. & Berg, L. J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Antov, A., Yang, L., Vig, M., Baltimore, D. & Van Parijs, L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J. Immunol. 171, 3435–3441 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Takaki, H. et al. STAT6 inhibits TGF-β1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J. Biol. Chem. 283, 14955–14962 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. O'Malley, J. T. et al. Signal transducer and activator of transcription 4 limits the development of adaptive regulatory T cells. Immunology 127, 587–595 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Cohen, A. C. et al. Cutting edge: decreased accumulation and regulatory function of CD4+CD25high T cells in human STAT5b deficiency. J. Immunol. 177, 2770–2774 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nature Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Holland, S. M. et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357, 1608–1619 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007). References 107 and 108 were the first to describe the unexpected dominant negative phenotype of missense mutations of STAT3 in patients.

    Article  CAS  PubMed  Google Scholar 

  109. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. van de Veerdonk, F. L. et al. Milder clinical hyperimmunoglobulin E syndrome phenotype is associated with partial interleukin-17 deficiency. Clin. Exp. Immunol. 159, 57–64 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Minegishi, Y. et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J. Exp. Med. 206, 1291–1301 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Danoy, P. et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. PLoS Genet. 6, e1001195 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Filer, C. et al. Investigation of association of the IL12B and IL23R genes with psoriatic arthritis. Arthritis Rheum. 58, 3705–3709 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Remmers, E. F. et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R–IL12RB2 regions associated with Behcet's disease. Nature Genet. 42, 698–702 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature Genet. 42, 123–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Glas, J. et al. Evidence for STAT4 as a common autoimmune gene: rs7574865 is associated with colonic Crohn's disease and early disease onset. PLoS ONE 5, e10373 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Korman, B. D. et al. Variant form of STAT4 is associated with primary Sjogren's syndrome. Genes Immun. 9, 267–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Cho, S. S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 157, 4781–4789 (1996).

    CAS  PubMed  Google Scholar 

  125. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Hellquist, A. et al. Evidence for genetic association and interaction between the TYK2 and IRF5 genes in systemic lupus erythematosus. J. Rheumatol. 36, 1631–1638 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Hawkins, R. D., Hon, G. C. & Ren, B. Next-generation genomics: an integrative approach. Nature Rev. Genet. 11, 476–486 (2010). A review of the basic concepts and application of next-generation sequencing techniques by experts in the field.

    Article  CAS  PubMed  Google Scholar 

  128. Hon, G., Ren, B. & Wang, W. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput. Biol. 4, e1000201 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009). This study indicates that the location of tissue-specific distal gene enhancers can be accurately predicted by mapping genome-wide p300 binding.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Bonasio, R., Tu, S. & Reinberg, D. Molecular signals of epigenetic states. Science 330, 612–616 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Gupta, P. K. Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26, 602–611 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Crawford, G. E. et al. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl Acad. Sci. USA 101, 992–997 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sabo, P. J. et al. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc. Natl Acad. Sci. USA 101, 4537–4542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Kuchen, S. et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828–839 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nature Biotech. 27, 66–75 (2009).

    Article  CAS  Google Scholar 

  146. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. O'Shea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John J. O'Shea's homepage

Gene Expression Omnibus

Ingenuity Pathways Analysis

Glossary

Next-generation sequencing

High-throughput sequencing methods that rapidly and inexpensively produce accurate sequencing data that can cover entire genomes. Several different platforms, based on different chemistries, are available, including: the Illumina Genome Analyzer, the Roche 454 Sequencing System, the Applied Biosystems SOLiD System and the Helicos BioSciences HeliScope.

Chromatin immunoprecipitation

(ChIP). A technique used to detect the DNA binding sites of specific proteins within chromatin. These assays involve chemical crosslinking of the bound proteins to the DNA, followed by immunoprecipitation with an antibody that is specific for the protein of interest.

Epigenetic regulation

The heritable, but potentially reversible, states of gene activity that are imposed by the structure of chromatin, such as covalent modifications of DNA or of nucleosomal histones. The epigenome pertains to the aspects of heritable cellular phenotype that are not explained by DNA sequence.

Nucleosome

A nucleosome consists of a core of histone proteins with a segment of DNA wrapped around it. It is the minimum unit required to make up a chromosome.

ChIP–seq

A technique in which chromatin immunoprecipitation is followed by high-throughput sequencing to generate a genome-wide distribution map of protein–DNA interactions. This technique can be used to measure transcription factor binding or histone modifications.

ChIP-on-chip

A technique that combines chromatin immunoprecipitation (ChIP) with microarray technology ('chip') to investigate protein–DNA interactions in vivo on a genome-wide basis.

Enhancer element

A control element in DNA that is bound by regulatory proteins that influence the rate of transcription of the associated gene(s). Enhancers function in an orientation- and position-independent manner, so they can be located either upstream or downstream of the associated gene, or in an intron.

Genome-wide association study

A study in which genome-wide genetic variation is linked to a particular phenotype, most often a clinical disorder, by applying high-throughput genotyping techniques to profile single nucleotide polymorphisms (SNPs) of control subjects compared with patients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Shea, J., Lahesmaa, R., Vahedi, G. et al. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 11, 239–250 (2011). https://doi.org/10.1038/nri2958

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing