Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DCs and NK cells: critical effectors in the immune response to HIV-1

Key Points

  • Dendritic cells (DCs) use distinct cell-specific receptors for binding to HIV that differentially affect both the fate of the virus and the subsequent effect of the virus on DCs.

  • The ability of conventional DCs (cDCs) to respond to HIV-1 is dysregulated. This may be due to a lack of Toll-like receptor (TLR)-mediated recognition of the virus; the modulation of internal signalling in cDCs by HIV-1 (such as through C-type lectins); or an indirect effect mediated by factors that are produced in the environment during HIV-1 infection. Such dysregulation may impede the ability of cDCs to stimulate adaptive immune responses to HIV-1.

  • Plasmacytoid DCs (pDCs) respond to HIV-1 through TLR7-mediated recognition of viral genomic RNA and produce type I interferons, which can limit viral replication but also contribute to bystander T cell death. pDCs further contribute to deleterious immunopathology during HIV-1 infection by secreting chemokines that attract uninfected T cells to the site of infection, and by inducing regulatory T cells, which can suppress the immune response to HIV-1.

  • Natural killer (NK) cells play an important immunoregulatory role in viral infection, including during HIV-1 infection, by secreting cytokines and by 'editing' DC function.

  • NK cells can also directly recognize HIV-1-infected cells using an array of different receptors, including activating receptors, killer cell immunoglobulin-like receptors and the CD16 receptor, which mediates antibody-dependent cell cytotoxicity.

  • Crosstalk between NK cells and DCs is crucial for optimizing the maturation of DCs and enhancing the ability of DCs to prime adaptive immune responses. However, HIV-1 infection interferes with this crosstalk.

Abstract

Dendritic cells (DCs) and natural killer (NK) cells have central roles in antiviral immunity by shaping the quality of the adaptive immune response to viruses and by mediating direct antiviral activity. HIV-1 infection is characterized by a severe dysregulation of the antiviral immune response that starts during early infection. This Review describes recent insights into how HIV-1 infection affects DC and NK cell function, and the roles of these innate immune cells in HIV-1 pathogenesis. The importance of understanding DC and NK cell crosstalk during HIV infection for the development of effective antiviral strategies is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cDCs and pDCs during HIV infection.
Figure 2: NK cell-mediated recognition of HIV-1-infected cells.
Figure 3: DC–NK cell crosstalk.

Similar content being viewed by others

References

  1. McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. & Haynes, B. F. The immune response during acute HIV-1 infection: clues for vaccine development. Nature Rev. Immunol. 10, 11–23 (2010).

    Article  CAS  Google Scholar 

  2. Liu, Y. J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Rescigno, M. & Borrow, P. The host-pathogen interaction: new themes from dendritic cell biology. Cell 106, 267–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Ferlazzo, G. et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl Acad. Sci. USA 101, 16606–16611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Romagnani, C. et al. Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+ T helper cells and CD4+CD25hi T regulatory cells. Eur. J. Immunol. 35, 2452–2458 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, L. & KewalRamani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nature Rev. Immunol. 6, 859–868 (2006).

    Article  CAS  Google Scholar 

  8. Ignatius, R. et al. The immunodeficiency virus coreceptor, Bonzo/STRL33/TYMSTR, is expressed by macaque and human skin- and blood-derived dendritic cells. AIDS Res. Hum. Retroviruses 16, 1055–1059 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, B., Ashlock, B. M., Foster, H., Fujimura, S. H. & Levy, J. A. HIV-infected cells are major inducers of plasmacytoid dendritic cell interferon production, maturation, and migration. Virology 343, 256–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Boggiano, C., Manel, N. & Littman, D. R. Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J. Virol. 81, 2519–2523 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sabatte, J. et al. Human seminal plasma abrogates the capture and transmission of human immunodeficiency virus type 1 to CD4+ T cells mediated by DC-SIGN. J. Virol. 81, 13723–13734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert, A. A., Gilbert, C., Richard, M., Beaulieu, A. D. & Tremblay, M. J. The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112, 1299–1307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Med. 13, 367–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Fahrbach, K. M. et al. Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J. Virol. 81, 6858–6868 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beignon, A. S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor–viral RNA interactions. J. Clin. Invest. 115, 3265–3275 (2005). This study showed how HIV stimulates pDCs for type I IFN production through TLR7 signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meier, A. et al. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J. Virol. 81, 8180–8191 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Sabado, R. L. et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 116, 3839–3852 (2010). This study examined the changes that occur in cDC and pDC frequency and function over the course of early HIV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smed-Sorensen, A. et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol. 79, 8861–8869 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gringhuis, S. I. et al. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nature Immunol. 11, 419–426 (2010). This study showed that productive HIV infection in cDCs is induced by TLR8 signalling, which initiates viral RNA transcription, and DC-SIGN signalling, which promotes transcript elongation.

    Article  CAS  Google Scholar 

  25. Deretic, V. Multiple regulatory and effector roles of autophagy in immunity. Curr. Opin. Immunol. 21, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blanchet, F. P. et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32, 654–669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Granelli-Piperno, A., Shimeliovich, I., Pack, M., Trumpfheller, C. & Steinman, R. M. HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J. Immunol. 176, 991–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F. P. & Steinman, R. M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Natl Acad. Sci. USA 101, 7669–7674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harman, A. N. et al. HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 114, 85–94 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donaghy, H., Gazzard, B., Gotch, F. & Patterson, S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 101, 4505–4511 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Cameron, P. U. et al. Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J. Virol. 81, 2297–2306 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kodama, A. et al. Impairment of in vitro generation of monocyte-derived human dendritic cells by inactivated human immunodeficiency virus-1: involvement of type I interferon produced from plasmacytoid dendritc cells. Hum. Immunol. 71, 541–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Meera, S., Madhuri, T., Manisha, G. & Ramesh, P. Irreversible loss of pDCs by apoptosis during early HIV infection may be a critical determinant of immune dysfunction. Viral Immunol. 23, 241–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Dillon, S. M. et al. Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lymphoid tissue during asymptomatic chronic HIV-1 infection. J. Acquir. Immune Defic. Syndr. 48, 1–12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehmann, C. et al. Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients. PLoS ONE 5, e11110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nascimbeni, M. et al. Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-α expression. Blood 113, 6112–6119 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Finke, J. S., Shodell, M., Shah, K., Siegal, F. P. & Steinman, R. M. Dendritic cell numbers in the blood of HIV-1 infected patients before and after changes in antiretroviral therapy. J. Clin. Immunol. 24, 647–652 (2004).

    Article  PubMed  Google Scholar 

  39. Killian, M. S., Fujimura, S. H., Hecht, F. M. & Levy, J. A. Similar changes in plasmacytoid dendritic cell and CD4 T-cell counts during primary HIV-1 infection and treatment. AIDS 20, 1247–1252 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Martinson, J. A. et al. Dendritic cells from HIV-1 infected individuals are less responsive to Toll-like receptor (TLR) ligands. Cell. Immunol. 250, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Said, E. A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nature Med. 16, 452–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kamga, I. et al. Type I interferon production is profoundly and transiently impaired in primary HIV-1 infection. J. Infect. Dis. 192, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Sachdeva, N., Asthana, V., Brewer, T. H., Garcia, D. & Asthana, D. Impaired restoration of plasmacytoid dendritic cells in HIV-1-infected patients with poor CD4 T cell reconstitution is associated with decrease in capacity to produce IFN-α but not proinflammatory cytokines. J. Immunol. 181, 2887–2897 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lehmann, C. et al. Increased interferon alpha expression in circulating plasmacytoid dendritic cells of HIV-1-infected patients. J. Acquir. Immune Defic. Syndr. 48, 522–530 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118, 3431–3439 (2008). This paper showed that HIV-stimulated pDCs induce T Reg cell differentiation through upregulation of IDO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Favre, D. et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med. 2, 32ra36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herbeuval, J. P. et al. Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 102, 13974–13979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herbeuval, J. P. et al. Differential expression of IFN-α and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients. Proc. Natl Acad. Sci. USA 103, 7000–7005 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nature Med. 15, 955–959 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. McMichael, A. J. HIV vaccines. Annu. Rev. Immunol. 24, 227–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Manches, O. & Bhardwaj, N. Resolution of immune activation defines nonpathogenic SIV infection. J. Clin. Invest. 119, 3512–3515 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mandl, J. N. et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nature Med. 14, 1077–1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Bosinger, S. E. et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J. Clin. Invest. 119, 3556–3572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jacquelin, B. et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J. Clin. Invest. 119, 3544–3555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, Q. et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature 458, 1034–1038 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med. 5, 405–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Mailliard, R. B. et al. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J. Immunol. 171, 2366–2373 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunol. 9, 495–502 (2008).

    Article  CAS  Google Scholar 

  62. Romagnani, C. et al. CD56brightCD16 killer Ig-like receptor NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol. 178, 4947–4955 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, J. et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115, 274–281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mavilio, D. et al. Characterization of CD56/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl Acad. Sci. USA 102, 2886–2891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alter, G. et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106, 3366–3369 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez, V. D. et al. Expansion of functionally skewed CD56-negative NK cells in chronic hepatitis C virus infection: correlation with outcome of pegylated IFN-α and ribavirin treatment. J. Immunol. 183, 6612–6618 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Lu, X. et al. CD16+ CD56 NK cells in the peripheral blood of cord blood transplant recipients: a unique subset of NK cells possibly associated with graft-versus-leukemia effect. Eur. J. Haematol. 81, 18–25 (2008).

    Article  PubMed  Google Scholar 

  68. Stratov, I., Chung, A. & Kent, S. J. Robust NK cell-mediated human immunodeficiency virus (HIV)-specific antibody-dependent responses in HIV-infected subjects. J. Virol. 82, 5450–5459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tiemessen, C. T. et al. Cutting edge: unusual NK cell responses to HIV-1 peptides are associated with protection against maternal-infant transmission of HIV-1. J. Immunol. 182, 5914–5918 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Bonaparte, M. I. & Barker, E. Killing of human immunodeficiency virus-infected primary T-cell blasts by autologous natural killer cells is dependent on the ability of the virus to alter the expression of major histocompatibility complex class I molecules. Blood 104, 2087–2094 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Cerboni, C. et al. Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. J. Gen. Virol. 88, 242–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Kottilil, S. et al. Innate immunity in human immunodeficiency virus infection: effect of viremia on natural killer cell function. J. Infect. Dis. 187, 1038–1045 (2003).

    Article  PubMed  Google Scholar 

  75. Portales, P. et al. Interferon-α restores HIV-induced alteration of natural killer cell perforin expression in vivo. AIDS 17, 495–504 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. De Maria, A. et al. The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur. J. Immunol. 33, 2410–2418 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Vieillard, V., Strominger, J. L. & Debre, P. NK cytotoxicity against CD4+ T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc. Natl Acad. Sci. USA 102, 10981–10986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fogli, M. et al. Significant NK cell activation associated with decreased cytolytic function in peripheral blood of HIV-1-infected patients. Eur. J. Immunol. 34, 2313–2321 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Mela, C. M. et al. Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. AIDS 19, 1761–1769 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664–3671 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Bernstein, H. B. et al. CD4+ NK cells can be productively infected with HIV, leading to downregulation of CD4 expression and changes in function. Virology 387, 59–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Flores-Villanueva, P. O. et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc. Natl Acad. Sci. USA 98, 5140–5145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martin, M. P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature Genet. 31, 429–434 (2002). This study first demonstrated the protective effect of KIR–HLA combinations in HIV-1 disease progression and showed that individuals expressing KIR3DS1 in conjunction with its putative ligand (HLA-Bw4-80I) have a slower progression to AIDS compared with individuals lacking either or both receptor–ligand pairs.

    Article  CAS  PubMed  Google Scholar 

  84. Alter, G. et al. HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J. Virol. 83, 6798–6805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alter, G. et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J. Exp. Med. 204, 3027–3036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Long, B. R. et al. Conferral of enhanced natural killer cell function by KIR3DS1 in early human immunodeficiency virus type 1 infection. J. Virol. 82, 4785–4792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boulet, S. et al. Increased proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals. AIDS 22, 595–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Gillespie, G. M. et al. Lack of KIR3DS1 binding to MHC class I Bw4 tetramers in complex with CD8+ T cell epitopes. AIDS Res. Hum. Retroviruses 23, 451–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Carr, W. H. et al. Cutting edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J. Immunol. 178, 647–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Altfeld, M. & Goulder, P. 'Unleashed' natural killers hinder HIV. Nature Genet. 39, 708–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Hickman, H. D. et al. Cutting edge: class I presentation of host peptides following HIV infection. J. Immunol. 171, 22–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, S. H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet. 28, 42–45 (2001).

    CAS  PubMed  Google Scholar 

  93. Kielczewska, A. et al. Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J. Exp. Med. 206, 515–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martin, M. P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nature Genet. 39, 733–740 (2007). This large genetic study showed that individuals with a KIR3DL1hiHLA-Bw4-80I+ phenotype had slower HIV-1 disease progression than individuals with a KIR3DL1lowHLA-Bw4-80I+ phenotype, indicating that KIR–HLA interactions can enhance the protective effect of HLA-Bw4 alleles.

    Article  CAS  PubMed  Google Scholar 

  95. Yawata, M. et al. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J. Exp. Med. 203, 633–645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thomas, R. et al. Novel KIR3DL1 alleles and their expression levels on NK cells: convergent evolution of KIR3DL1 phenotype variation? J. Immunol. 180, 6743–6750 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Fernandez, N. C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, S. et al. HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc. Natl Acad. Sci. USA 105, 3053–3058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947 (2007). This genome-wide association study showed that a protective SNP associated with higher HLA-C expression correlates with better control of HIV-1 viraemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thomas, R. et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nature Genet. 41, 1290–1294 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol. 7, 507–516 (2006).

    Article  CAS  Google Scholar 

  105. Kikuchi, T. et al. Dendritic cells pulsed with live and dead Legionella pneumophila elicit distinct immune responses. J. Immunol. 172, 1727–1734 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gerosa, F. et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Borg, C. et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104, 3267–3275 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nature Immunol. 5, 1260–1265 (2004).

    Article  CAS  Google Scholar 

  110. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Della Chiesa, M. et al. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur. J. Immunol. 33, 1657–1666 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Reitano, K. N. et al. Defective plasmacytoid dendritic cell–NK cell cross-talk in HIV infection. AIDS Res. Hum. Retroviruses 25, 1029–1037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tasca, S. et al. Escape of monocyte-derived dendritic cells of HIV-1 infected individuals from natural killer cell-mediated lysis. AIDS 17, 2291–2298 (2003).

    Article  PubMed  Google Scholar 

  115. Mavilio, D. et al. Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J. Exp. Med. 203, 2339–2350 (2006). This paper shows that NK cell-mediated DC editing is severely impaired in progressive HIV-1 infection, and this appears to be due to an increased accumulation of CD56 NK cells with impaired NKp30 function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Quaranta, M. G. et al. HIV-1 Nef impairs the dynamic of DC/NK crosstalk: different outcome of CD56dim and CD56bright NK cell subsets. FASEB J. 21, 2323–2334 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Poggi, A. et al. NK cell activation by dendritic cells is dependent on LFA-1-mediated induction of calcium-calmodulin kinase II: inhibition by HIV-1 Tat C-terminal domain. J. Immunol. 168, 95–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Melki, M. T., Saidi, H., Dufour, A., Olivo-Marin, J. C. & Gougeon, M. L. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk—a pivotal role of HMGB1. PLoS Pathog. 6, e1000862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saidi, H., Melki, M. T. & Gougeon, M. L. HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk. PLoS ONE 3, e3601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alter, G. et al. IL-10 induces aberrant deletion of dendritic cells by natural killer cells in the context of HIV infection. J. Clin. Invest. 120, 1905–1913 (2010). This work showed that IL-10 secreted in response to HIV-1 renders immature DCs resistant to NK cell-mediated killing, resulting in the accumulation of poorly immunogenic DCs in the lymph nodes of infected patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lu, W., Arraes, L. C., Ferreira, W. T. & Andrieu, J. M. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nature Med. 10, 1359–1365 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nature Med. 15, 293–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Wyand, M. S. et al. Protection by live, attenuated simian immunodeficiency virus against heterologous challenge. J. Virol. 73, 8356–8363 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol. 11, 1127–1135 (2010).

    Article  CAS  Google Scholar 

  125. Brodin, P., Lakshmikanth, T., Johansson, S., Karre, K. & Hoglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Yu, J. et al. Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J. Immunol. 179, 5977–5989 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Yawata, M. et al. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112, 2369–2380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (to N.B. and M.A.), the Doris Duke Charitable Foundation (to M.A.), the Bill & Melinda Gates Foundation (to N.B. and M.A.) and the Phillip T. and Susan M. Ragon Foundation (to M.A. and L.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Altfeld or Nina Bhardwaj.

Ethics declarations

Competing interests

Nina Bhardwaj is an inventor on patents related to the use of dendritic cells as immunomodulators.

Glossary

Viral synapse

A polarized synaptic contact point for cell to cell transmission of viruses. These contacts can occur between DCs and CD4+ T cells.

Clusterin

A ubiquitously expressed glycoprotein that functions as an extracellular chaperone. It is widely expressed in various types of cancer.

Birbeck granule

A membrane-bound structure that is found in the cytoplasm of Langerhans cells. These granules are rod- or tennis racket-shaped with a central linear density. Their formation is induced by langerin, an endocytic C-type lectin receptor that is specific to Langerhans cells.

Autophagy

An evolutionarily conserved process in which acidic double-membrane vacuoles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation, through fusion to secondary lysosomes.

Perforin

A component of cytolytic granules that participates in the permeabilization of plasma membranes, allowing granzymes and other cytotoxic components to enter target cells.

Granzyme A

A member of a family of serine proteinases that are found, primarily, in the cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells. Granzymes enter target cells through perforin pores, then cleave and activate intracellular caspases to initiate target cell apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altfeld, M., Fadda, L., Frleta, D. et al. DCs and NK cells: critical effectors in the immune response to HIV-1. Nat Rev Immunol 11, 176–186 (2011). https://doi.org/10.1038/nri2935

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing