IN BRIEF

ALLERGY

Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths

Ohnmacht, C. et al. Immunity 1 Sep 2010 (doi:10.1016/ j.immuni.2010.08.011)

CD11c depletion severely disrupts Th2 induction and development *in vivo*

Phythian-Adams, A. T. *et al. J. Exp. Med.* 6 Sep 2010 (doi:10.1084/ jem.20100734)

Inflammatory dendritic cells — not basophils — are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen

Hammad, H. et al. J. Exp. Med. 7 Sep 2010 (doi:10.1084/jem.20101563)

Basophils have recently attracted much interest as an antigenpresenting population, but the overall importance of basophils for T helper 2 (T_u2)-type immunity has remained unclear. These new studies suggest that only dendritic cells (DCs) are crucial for the initiation of T_2-type immunity; basophils instead seem to be important for promoting chronic and secondary T_{μ}^2 -type responses. Ohnmacht et al. generated a transgenic mouse that constitutively lacked most basophils; these mice had normal T. 2 cell responses to allergens and the helminth Nippostrongylus brasiliensis but showed resistance to IgE-dependent chronic allergic dermatitis and increased susceptibility to secondary helminth infections. However, DC-depleted mice had defective T₁2 cell development following immunization, despite normal basophil recruitment. Similarly, Phythian-Adams et al. reported that although DC depletion inhibited T_H2 cell development following infection with Schistosoma mansoni, depletion of basophils had no effect. Hammad et al. showed that only DCs were essential for $T_{\mu}2$ cell responses to house dust mite allergen. High-affinity Fc receptor for IgE (FccR1)⁺ inflammatory DCs, but not basophils, presented antigen and induced T_2 cell development following exposure to allergen. However, basophils did amplify the $T_{\mu}2$ -type response following allergen challenge. The description of a role for FccR1⁺ DCs may explain why previous studies using FceR1-specific antibodies to deplete basophils suggested that they were crucial for $T_{\mu}2$ cell development.

T CELL RESPONSES

Responses against a subdominant CD8⁺ T cell epitope protect against immunopathology caused by a dominant epitope

Ruckwardt, T. J. *et al. J. Immunol.* 10 Sep 2010 (doi:10.4049/ jimmunol.1001606)

The CD8⁺ T cell response to respiratory syncytial virus (RSV) in CB6F1 mice is focused on two viral epitopes — the immunodominant epitope H2-K^d–M2₈₂₋₉₀ and the subdominant epitope H2-D^b–M₁₈₇₋₁₉₅. Although RSV is cleared efficiently by the T cell response, this often results in immunopathology; this study looked at the contribution of these viral epitopes to immunity versus host damage. By mutating MHC-binding anchor residues in the RSV M2 and M proteins, the authors could study the responses to M2₈₂₋₉₀ and M₁₈₇₋₁₉₅ separately. Absence of the dominant M2₈₂₋₉₀ epitope was compensated for by an increased response to the subdominant M₁₈₇₋₁₉₅ epitope; this increased response of M₁₈₇₋₁₉₅ resulted in 'overcompensation' by the response to M2₈₂₋₉₀ and increased illness that correlated with decreased functionality of the dominant T cell population as measured by cytokine production. These results indicate that the subdominant H2-D^b–M₁₈₇₋₁₉₅ response.