Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen-presenting cell function in the tolerogenic liver environment

Key Points

  • The liver is a solid organ with unique immunoregulatory functions that are determined by the hepatic microenvironment, which is rich in regulatory soluble mediators, and by local antigen-presenting cells (APCs) with tolerogenic capabilities located within a unique anatomical microarchitecture.

  • Local hepatic APCs with tolerogenic function are myeloid and plasmacytoid dendritic cells, liver sinusoidal endothelial cells, Kupffer cells and hepatocytes. Under steady-state conditions, these cells induce T cell tolerance by numerous mechanisms, including clonal elimination, the induction of T cell anergy and the induction, recruitment or proliferation of regulatory T (TReg) cells.

  • Tolerogenic hepatic APCs characteristically resist functional maturation in response to pathogen- or danger-associated molecular patterns (PAMPs; DAMPs), which are present physiologically in portal venous blood, through the development of hyporesponsiveness towards these stimuli or through non-responsiveness due to cell-intrinsic regulatory mechanisms.

  • Microbial infection leading to the functional maturation of tolerogenic into immunogenic APCs, either by cell-autonomous mechanisms or cell–cell interactions, can result in the local induction of T cell immunity in the liver by mechanisms that still need to be defined.

  • The abundance of tolerogenic APCs within the hepatic sinusoids facilitates interaction with circulating T cells and allows the liver to function as a large immunoregulatory platform aimed at skewing hepatic, as well as extrahepatic, immune responses. The principles governing hepatic tolerance or immunity may be exploited to develop therapeutic options to mitigate autoimmunity or allograft rejection, to prolong hepatic transgene expression or to overcome tolerogenic barriers in persistent infection and cancer.

Abstract

The demands that are imposed on the liver as a result of its function as a metabolic organ that extracts nutrients and clears gut-derived microbial products from the blood are met by a unique microanatomical and immunological environment. The inherent tolerogenicity of the liver and its role in the regulation of innate and adaptive immunity are mediated by parenchymal and non-parenchymal antigen-presenting cells (APCs), cell-autonomous molecular pathways and locally produced factors. Here, we review the central role of liver APCs in the regulation of hepatic immune function and also consider how recent insights may be applied in strategies to target liver tolerance for disease therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic functions of the liver, general anatomy and location of liver APCs and factors that regulate their function.
Figure 2: Mechanisms downmodulating the responsiveness of liver myeloid dendritic cells to lipopolysaccharide.
Figure 3: Functional biology of liver plasmacytoid DCs.
Figure 4: Different hepatic antigen-presenting cells use B7-H1 to promote local T cell tolerance.

Similar content being viewed by others

References

  1. Breiner, K. M., Schaller, H. & Knolle, P. A. Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 34, 803–808 (2001).

    CAS  PubMed  Google Scholar 

  2. Cormier, E. G. et al. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl Acad. Sci. USA 101, 14067–14072 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pradel, G. & Frevert, U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33, 1154–1165 (2001).

    CAS  PubMed  Google Scholar 

  4. van Egmond, M. et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nature Med. 6, 680–685 (2000).

    CAS  PubMed  Google Scholar 

  5. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Inatsu, A. et al. Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology 49, 2044–2054 (2009).

    CAS  PubMed  Google Scholar 

  7. Knolle, P. A. & Gerken, G. Local control of the immune response in the liver. Immunol. Rev. 174, 21–34 (2000).

    CAS  PubMed  Google Scholar 

  8. Das, A. et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med. 205, 2111–2124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ball, H. J., Yuasa, H. J., Austin, C. J., Weiser, S. & Hunt, N. H. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol. 41, 467–471 (2009).

    CAS  PubMed  Google Scholar 

  10. Steptoe, R. J., Patel, R. K., Subbotin, V. M. & Thomson, A. W. Comparative analysis of dendritic cell density and total number in commonly transplanted organs: morphometric estimation in normal mice. Transpl. Immunol. 8, 49–56 (2000).

    CAS  PubMed  Google Scholar 

  11. Woo, J. et al. Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells. Transplantation 58, 484–491 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Steptoe, R. J. et al. Augmentation of dendritic cells in murine organ donors by Flt3 ligand alters the balance between transplant tolerance and immunity. J. Immunol. 159, 5483–5491 (1997).

    CAS  PubMed  Google Scholar 

  13. Lu, L. et al. Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen. J. Exp. Med. 179, 1823–1834 (1994). Together with references 14 and 64, these findings provide insight into the regulation of liver DC maturation and are congruent with the possibility that the migration of immature DCs from liver grafts may explain their inherent tolerogenicity.

    CAS  PubMed  Google Scholar 

  14. Rastellini, C. et al. Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation 60, 1366–1370 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomson, A. W. & Lu, L. Are dendritic cells the key to liver transplant tolerance? Immunol. Today 20, 27–32 (1999).

    CAS  PubMed  Google Scholar 

  16. Bamboat, Z. M. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J. Immunol. 182, 1901–1911 (2009). These observations show that human liver DCs secrete substantial amounts of IL-10, induce T cell hyporesponsiveness and generate T Reg cells by an IL-10-dependent mechanism.

    CAS  PubMed  Google Scholar 

  17. Xia, S. et al. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood 112, 3175–3185 (2008). This study provides evidence that the liver microenvironment is crucial for programming haematopoietic progenitor cells to develop into tolerogenic DCs in situ , a process that may contribute to the maintenance of hepatic tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, G., Kim, Y. J. & Broxmeyer, H. E. Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10highIL-12absent dendritic cells with tolerogenic potential. J. Immunol. 174, 4706–4717 (2005).

    CAS  PubMed  Google Scholar 

  19. Rutella, S. et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108, 218–227 (2006).

    CAS  PubMed  Google Scholar 

  20. Xia, G., He, J. & Leventhal, J. R. Ex vivo-expanded natural CD4+CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts. Am. J. Transplant. 8, 298–306 (2008).

    CAS  PubMed  Google Scholar 

  21. Cabillic, F. et al. Hepatic environment elicits monocyte differentiation into a dendritic cell subset directing TH2 response. J. Hepatology 44, 552–559 (2006).

    CAS  Google Scholar 

  22. Lian, Z. X. et al. Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J. Immunol. 170, 2323–2330 (2003).

    CAS  PubMed  Google Scholar 

  23. Pillarisetty, V. G., Shah, A. B., Miller, G., Bleier, J. I. & DeMatteo, R. P. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J. Immunol. 172, 1009–1017 (2004).

    CAS  PubMed  Google Scholar 

  24. O'Connell, P. J., Morelli, A. E., Logar, A. J. & Thomson, A. W. Phenotypic and functional characterization of mouse hepatic CD8α+ lymphoid-related dendritic cells. J. Immunol. 165, 795–803 (2000).

    CAS  PubMed  Google Scholar 

  25. Swiecki, M. & Colonna, M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 234, 142–162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007).

    CAS  Google Scholar 

  27. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol. 8, 1217–1226 (2007).

    CAS  Google Scholar 

  28. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  29. Bosma, B. et al. Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl. 12, 384–393 (2006).

    PubMed  Google Scholar 

  30. Tanis, W. et al. Human hepatic lymph nodes contain normal numbers of mature myeloid dendritic cells but few plasmacytoid dendritic cells. Clin. Immunol. 110, 81–88 (2004).

    CAS  PubMed  Google Scholar 

  31. Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193, 35–50 (2000).

    Google Scholar 

  32. Matsuno, K., Nomiyama, H., Yoneyama, H. & Uwatoku, R. Kupffer cell-mediated recruitment of dendritic cells to the liver crucial for a host defense. Dev. Immunol. 9, 143–149 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Uwatoku, R. et al. Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of N-acetylgalactosamine-specific sugar receptors. Gastroenterology 121, 1460–1472 (2001).

    CAS  PubMed  Google Scholar 

  34. Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis and translocation from the liver to the draining lymph. J. Exp. Med. 183, 1865–1878 (1996).

    CAS  PubMed  Google Scholar 

  35. Sato, T., Yamamoto, H., Sasaki, C. & Wake, K. Maturation of rat dendritic cells during intrahepatic translocation evaluated using monoclonal antibodies and electron microscopy. Cell Tissue Res. 294, 503–514 (1998).

    CAS  PubMed  Google Scholar 

  36. Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J. Exp. Med. 185, 777–784 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yrlid, U. et al. Plasmacytoid dendritic cells do not migrate in intestinal or hepatic lymph. J. Immunol. 177, 6115–6121 (2006).

    CAS  PubMed  Google Scholar 

  38. Abe, M., Zahorchak, A. F., Colvin, B. L. & Thomson, A. W. Migratory responses of murine hepatic myeloid, lymphoid-related, and plasmacytoid dendritic cells to CC chemokines. Transplantation 78, 762–765 (2004).

    CAS  PubMed  Google Scholar 

  39. van den Oord, J. J. et al. Distribution of non-lymphoid, inflammatory cells in chronic HBV infection. J. Pathol. 160, 223–230 (1990).

    CAS  PubMed  Google Scholar 

  40. Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193, 35–49 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    CAS  PubMed  Google Scholar 

  42. Abe, M., Tokita, D., Raimondi, G. & Thomson, A. W. Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct Th1-type responses. Eur. J. Immunol. 36, 2483–2493 (2006).

    CAS  PubMed  Google Scholar 

  43. De Creus, A. et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J. Immunol. 174, 2037–2045 (2005).

    CAS  PubMed  Google Scholar 

  44. Chen, Y. et al. Distinct response of liver myeloid dendritic cells to endotoxin is mediated by IL-27. J. Hepatol. 51, 510–519 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Khanna, A. et al. Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses in vitro and in vivo. J. Immunol. 164, 1346–1354 (2000).

    CAS  PubMed  Google Scholar 

  46. Jinushi, M. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4+ CD25+ T cells with PD-1-dependent regulatory activities. Immunology 120, 73–82 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kingham, T. P. et al. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology 45, 445–454 (2007).

    CAS  PubMed  Google Scholar 

  48. Villadangos, J. A. & Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352–361 (2008).

    CAS  PubMed  Google Scholar 

  49. Castellaneta, A., Sumpter, T. L., Chen, L., Tokita, D. & Thomson, A. W. NOD2 ligation subverts IFN-α production by liver plasmacytoid dendritic cells and inhibits their T cell allostimulatory activity via B7-H1 up-regulation. J. Immunol. 183, 6922–6932 (2009).

    CAS  PubMed  Google Scholar 

  50. Jomantaite, I. et al. Hepatic dendritic cell subsets in the mouse. Eur. J. Immunol. 34, 355–365 (2004).

    CAS  PubMed  Google Scholar 

  51. Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nature Immunol. 7, 1250–1257 (2006).

    CAS  Google Scholar 

  52. Tokita, D. et al. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. J. Hepatol. 49, 1008–1018 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Goubier, A. et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29, 464–475 (2008). Evidence that liver pDCs induce efficient CD4+ and CD8+ T cell tolerance to orally administered antigens that reach the liver through the blood.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Watanabe, T. et al. A liver tolerates a portal antigen by generating CD11c+ cells, which select Fas ligand+ TH2 cells via apoptosis. Hepatology 38, 403–412 (2003).

    CAS  PubMed  Google Scholar 

  55. Crispe, I. N. Hepatic T cells and liver tolerance. Nature Rev. Immunol. 3, 51–62 (2003). A detailed account of T cell biology in the liver and of the mechanisms that promote T cell inactivation, tolerance and apoptosis following local antigen presentation in the liver.

    CAS  Google Scholar 

  56. Tsoulfas, G. et al. Activation of the lipopolysaccharide signaling pathway in hepatic transplantion preservation injury. Transplantation 74, 7–13 (2002).

    CAS  PubMed  Google Scholar 

  57. Zhai, Y. et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J. Immunol. 173, 7115–7119 (2004).

    CAS  PubMed  Google Scholar 

  58. Tsung, A. et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J. Immunol. 175, 7661–7668 (2005).

    CAS  PubMed  Google Scholar 

  59. Loi, P. et al. The fate of dendritic cells in a mouse model of liver ischemia/reperfusion injury. Transplant. Proc. 36, 1275–1279 (2004).

    CAS  PubMed  Google Scholar 

  60. Bamboat, Z. M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest. 120, 559–569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsung, A. et al. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J. Leuk. Biol. 81, 1–10 (2007).

    Google Scholar 

  62. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol. 8, 487–496 (2007).

    CAS  Google Scholar 

  63. Calne, R. Y. et al. Induction of immunological tolerance by porcine liver allografts. Nature 223, 472–476 (1969).

    CAS  PubMed  Google Scholar 

  64. Lu, L. et al. Growth of donor-derived dendritic cells from the bone marrow of murine liver allograft recipients in response to granulocyte/macrophage colony stimulating factor. J. Exp. Med. 182, 379–387 (1995).

    CAS  PubMed  Google Scholar 

  65. Drakes, M. L., Lu, L., Subbotin, V. M. & Thomson, A. W. In vivo administration of flt3 ligand markedly stimulates generation of dendritic cell progenitors from mouse liver. J. Immunol. 159, 4268–4278 (1997).

    CAS  PubMed  Google Scholar 

  66. Morelli, A. E. et al. Preferential induction of TH1 responses by functionally mature hepatic (CD8α and CD8α+) dendritic cells: association with conversion from liver transplant tolerance to acute rejection. Transplantation 69, 2647–2657 (2000).

    CAS  PubMed  Google Scholar 

  67. Li, W. et al. IL-12 antagonism enhances apoptotic death of T cells within hepatic allografts from Flt3 ligand-treated donors and promotes graft acceptance. J. Immunol. 166, 5619–5628 (2001).

    CAS  PubMed  Google Scholar 

  68. Wysocka, M., Montaner, L. J. & Karp, C. L. Flt3 ligand treatment reverses endotoxin tolerance-related immunoparalysis. J. Immunol. 174, 7398–7402 (2005).

    CAS  PubMed  Google Scholar 

  69. Chen, S. et al. Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer Lett. 148, 49–57 (2000).

    CAS  PubMed  Google Scholar 

  70. Zhang, Z. et al. Increased infiltration of intrahepatic DC subsets closely correlate with viral control and liver injury in immune active pediatric patients with chronic hepatitis B. Clin. Immunol. 122, 173–180 (2007).

    CAS  PubMed  Google Scholar 

  71. Lai, W. K. et al. Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. J. Hepatol. 47, 338–347 (2007).

    CAS  PubMed  Google Scholar 

  72. Lau, D. T. et al. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology 47, 799–809 (2008).

    CAS  PubMed  Google Scholar 

  73. Takahashi, K. et al. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc. Natl Acad. Sci. USA 107, 7431–7436 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kinoshita, M. et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J. Hepatol. 53, 903–910 (2010).

    CAS  PubMed  Google Scholar 

  75. Hardonk, M. J., Dijkhuis, F. W., Grond, J., Koudstaal, J. & Poppema, S. Evidence for a migratory capability of rat Kupffer cells to portal tracts and hepatic lymph nodes. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 51, 429–442 (1986).

    CAS  PubMed  Google Scholar 

  76. Ju, C., McCoy, J. P., Chung, C. J., Graf, M. L. & Pohl, L. R. Tolerogenic role of Kupffer cells in allergic reactions. Chem. Res. Toxicol. 16, 1514–1519 (2003).

    CAS  PubMed  Google Scholar 

  77. Callery, M. P., Kamei, T. & Flye, M. W. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation 47, 1092–1094 (1989).

    CAS  PubMed  Google Scholar 

  78. Sato, K., Yabuki, K., Haba, T. & Maekawa, T. Role of Kupffer cells in the induction of tolerance after liver transplantation. J. Surg. Res. 63, 433–438 (1996).

    CAS  PubMed  Google Scholar 

  79. You, Q., Cheng, L., Kedl, R. M. & Ju, C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48, 978–990 (2008).

    CAS  PubMed  Google Scholar 

  80. Knolle, P. A. et al. Interleukin-10 expression is autoregulated at the transcriptional level in human and murine Kupffer cells. Hepatology 27, 93–99 (1998).

    CAS  PubMed  Google Scholar 

  81. Bissell, D. M., Wang, S. S., Jarnagin, W. R. & Roll, F. J. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J. Clin. Invest. 96, 447–455 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Breous, E., Somanathan, S., Vandenberghe, L. H. & Wilson, J. M. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50, 612–621 (2009). This report and references 79 and 80 describe mechanisms whereby Kupffer cells support systemic T cell tolerance towards circulating and hepatocyte-derived antigens.

    CAS  PubMed  Google Scholar 

  83. Wiegard, C. et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 42, 193–199 (2005).

    CAS  PubMed  Google Scholar 

  84. Kuniyasu, Y., Marfani, S. M., Inayat, I. B., Sheikh, S. Z. & Mehal, W. Z. Kupffer cells required for high affinity peptide-induced deletion, not retention, of activated CD8+ T cells by mouse liver. Hepatology 39, 1017–1027 (2004). Evidence that Kupffer cells are required for the deletion, not retention, of activated CD8+ T cells in the liver.

    PubMed  Google Scholar 

  85. Polakos, N. K. et al. Kupffer cell-dependent hepatitis occurs during influenza infection. Am. J. Pathol. 168, 1169–1178 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Montalvo-Jave, E. E., Escalante-Tattersfield, T., Ortega-Salgado, J. A., Pina, E. & Geller, D. A. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J. Surg. Res. 147, 153–159 (2008).

    CAS  PubMed  Google Scholar 

  87. Giakoustidis, D. E. et al. Blockade of Kupffer cells by gadolinium chloride reduces lipid peroxidation and protects liver from ischemia/reperfusion injury. Hepatogastroenterology 50, 1587–1592 (2003).

    CAS  PubMed  Google Scholar 

  88. Ellett, J. D. et al. Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J. Immunol. 184, 5849–5858 (2010).

    CAS  PubMed  Google Scholar 

  89. Schmieg, J., Yang, G., Franck, R. W., Van Rooijen, N. & Tsuji, M. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc. Natl Acad. Sci. USA 102, 1127–1132 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Beattie, L. et al. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog. 6, e1000805 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Lee, W. Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nature Immunol. 11, 295–302 (2010). This article reports a major advance in imaging technology for visualizing the interaction of hepatic APCs with pathogens. The new technology has revealed a novel role for Kupffer cells in cooperation with hepatic NKT cells in antibacterial immunity.

    CAS  Google Scholar 

  92. Giannandrea, M., Pierce, R. H. & Crispe, I. N. Indirect action of tumor necrosis factor-α in liver injury during the CD8+ T cell response to an adeno-associated virus vector in mice. Hepatology 49, 2010–2020 (2009).

    CAS  PubMed  Google Scholar 

  93. Knolle, P. A. et al. Induction of cytokine production in naive CD4+ T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward TH1 cells. Gastroenterology 116, 1428–1440 (1999). This report provides early evidence and the basis for further work showing that LSECs present antigen and promote T cell tolerance.

    CAS  PubMed  Google Scholar 

  94. Lohse, A. W. et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110, 1175–1181 (1996).

    CAS  PubMed  Google Scholar 

  95. Knolle, P. A. et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J. Immunol. 162, 1401–1407 (1999).

    CAS  PubMed  Google Scholar 

  96. Onoe, T. et al. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J. Immunol. 175, 139–146 (2005).

    CAS  PubMed  Google Scholar 

  97. Tokita, D. et al. Liver sinusoidal endothelial cells that endocytose allogeneic cells suppress T cells with indirect allospecificity. J. Immunol. 177, 3615–3624 (2006).

    CAS  PubMed  Google Scholar 

  98. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Med. 6, 1348–1354 (2000). This report indicates that the outcome of soluble exogenous antigen cross-presentation by LSECs to CD8+ T cells is tolerance rather than immunity.

    CAS  PubMed  Google Scholar 

  99. Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P. A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316, 612–616 (2007).

    CAS  PubMed  Google Scholar 

  100. Schurich, A. et al. Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 50, 909–919 (2009).

    CAS  PubMed  Google Scholar 

  101. Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47, 296–305 (2008).

    CAS  PubMed  Google Scholar 

  102. Limmer, A. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol. 35, 2970–2981 (2005).

    CAS  PubMed  Google Scholar 

  103. Berg, M. et al. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur. J. Immunol. 36, 2960–2970 (2006).

    CAS  Google Scholar 

  104. Schurich, A. et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J. Immunol. 184, 4107–4114 (2010).

    CAS  PubMed  Google Scholar 

  105. Pohlmann, S. et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77, 4070–4080 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kern, M. et al. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 138, 336–346 (2010).

    CAS  PubMed  Google Scholar 

  107. Jacob, A. I., Goldberg, P. K., Bloom, N., Degenshein, G. A. & Kozinn, P. J. Endotoxin and bacteria in portal blood. Gastroenterology 72, 1268–1270 (1977).

    CAS  PubMed  Google Scholar 

  108. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R. M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bashirova, A. A. et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med. 193, 671–678 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, W. et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J. Biol. Chem. 279, 18748–18758 (2004).

    CAS  PubMed  Google Scholar 

  111. Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nature Rev. Immunol. 9, 465–479 (2009).

    CAS  Google Scholar 

  112. Tang, L. et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology 137, 1498–1508 (2009). These findings reveal that LSECtin, which is expressed by LSECs, is a new negative regulator of hepatic T cell function.

    CAS  PubMed  Google Scholar 

  113. Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20, 327–336 (2004). Evidence that the co-inhibitory molecule B7-H1 selectively regulates the accumulation and deletion of CD8+ T cells in the liver.

    CAS  PubMed  Google Scholar 

  114. Schildberg, F. A. et al. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur. J. Immunol. 38, 957–967 (2008).

    CAS  PubMed  Google Scholar 

  115. Warren, A. et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44, 1182–1190 (2006).

    CAS  PubMed  Google Scholar 

  116. Bertolino, P., Trescol-Biemont, M. C. & Rabourdin-Combe, C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol. 28, 221–236 (1998).

    CAS  PubMed  Google Scholar 

  117. Holz, L. E. et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 135, 989–997 (2008).

    PubMed  Google Scholar 

  118. Bowen, D. G. et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest. 114, 701–712 (2004). References 116–118 provide evidence that intrahepatic T cell activation by hepatocytes leads to (BIM-dependent) death and promotes intrahepatic tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wahl, C., Bochtler, P., Schirmbeck, R. & Reimann, J. Type I IFN-producing CD4 Vα14 iNKT cells facilitate priming of IL-10-producing CD8 T cells by hepatocytes. J. Immunol. 178, 2083–2093 (2007).

    CAS  PubMed  Google Scholar 

  120. Herkel, J. et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology 37, 1079–1085 (2003).

    CAS  PubMed  Google Scholar 

  121. Wiegard, C. et al. Defective T helper response of hepatocyte-stimulated CD4 T cells impairs antiviral CD8 response and viral clearance. Gastroenterology 133, 2010–2018 (2007).

    CAS  PubMed  Google Scholar 

  122. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    CAS  PubMed  Google Scholar 

  123. Dikopoulos, N. et al. Recently primed CD8+ T cells entering the liver induce hepatocytes to interact with naive CD8+ T cells in the mouse. Hepatology 39, 1256–1266 (2004).

    CAS  PubMed  Google Scholar 

  124. Wuensch, S. A., Pierce, R. H. & Crispe, I. N. Local intrahepatic CD8+ T cell activation by a non-self-antigen results in full functional differentiation. J. Immunol. 177, 1689–1697 (2006).

    CAS  PubMed  Google Scholar 

  125. Vinas, O. et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38, 919–929 (2003).

    CAS  PubMed  Google Scholar 

  126. Winau, F. et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26, 117–129 (2007).

    CAS  PubMed  Google Scholar 

  127. Yu, M. C. et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40, 1312–1321 (2004).

    CAS  PubMed  Google Scholar 

  128. Yang, H. R. et al. A critical role of TRAIL expressed on cotransplanted hepatic stellate cells in prevention of islet allograft rejection. Microsurgery 30, 332–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  129. Jiang, G. et al. Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation 86, 1492–1502 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, H. R. et al. Mechanistic insights into immunomodulation by hepatic stellate cells in mice: a critical role of interferon-γ signaling. Hepatology 50, 1981–1991 (2009).

    CAS  PubMed  Google Scholar 

  131. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature Med. 12, 342–347 (2006).

    CAS  PubMed  Google Scholar 

  132. Mingozzi, F. et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature Med. 13, 419–422 (2007).

    CAS  PubMed  Google Scholar 

  133. Pien, G. C. et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J. Clin. Invest. 119, 1688–1695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cooper, M. et al. Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer. Hum. Gene Ther. 20, 767–776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mingozzi, F. et al. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood 110, 2334–2341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kren, B. T. et al. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J. Clin. Invest. 119, 2086–2099 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Feng, S. Long-term management of immunosuppression after pediatric liver transplantation: is minimization or withdrawal desirable or possible or both? Curr. Opin. Organ Transplant. 13, 506–512 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. Orlando, G., Soker, S. & Wood, K. Operational tolerance after liver transplantation. J. Hepatol. 50, 1247–1257 (2009).

    PubMed  Google Scholar 

  139. Horstmann, B., Zinser, E., Turza, N., Kerek, F. & Steinkasserer, A. MCS-18, a novel natural product isolated from Helleborus purpurascens, inhibits dendritic cell activation and prevents autoimmunity as shown in vivo using the EAE model. Immunobiology 212, 839–853 (2007).

    CAS  PubMed  Google Scholar 

  140. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Luth, S. et al. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J. Clin. Invest. 118, 3403–3410 (2008). An encouraging report showing that ectopic expression of an autoantigen in the liver can promote liver-induced tolerance and suppress extrahepatic autoimmune disease.

    PubMed  PubMed Central  Google Scholar 

  142. Junt, T., Scandella, E. & Ludewig, B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nature Rev. Immunol. 8, 764–775 (2008).

    CAS  Google Scholar 

  143. MacPhee, P. J., Schmidt, E. E. & Groom, A. C. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am. J. Physiol. 269, G692–G698 (1995).

    CAS  PubMed  Google Scholar 

  144. Wong, J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest. 99, 2782–2790 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bertolino, P., Bowen, D. G., McCaughan, G. W. & Fazekas de St. Groth, B. Antigen-specific primary activation of CD8+ T cells within the liver. J. Immunol. 166, 5430–5438 (2001).

    CAS  PubMed  Google Scholar 

  146. von Oppen, N. et al. Systemic antigen cross-presented by liver sinusoidal endothelial cells induces liver-specific CD8 T-cell retention and tolerization. Hepatology 49, 1664–1672 (2009).

    CAS  PubMed  Google Scholar 

  147. Uwatoku, R. et al. Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of N-acetylgalactosamine-specific sugar receptors. Gastroenterology 121, 1460–1472 (2001).

    CAS  PubMed  Google Scholar 

  148. Schrage, A. et al. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. Hepatology 48, 1262–1272 (2008).

    PubMed  Google Scholar 

  149. Oo, Y. H. & Adams, D. H. The role of chemokines in the recruitment of lymphocytes to the liver. J. Autoimmun. 34, 45–54 (2010).

    CAS  PubMed  Google Scholar 

  150. Bonder, C. S. et al. Rules of recruitment for TH1 and TH2 lymphocytes in inflamed liver: a role for α4 integrin and vascular adhesion protein-1. Immunity 23, 153–163 (2005).

    CAS  PubMed  Google Scholar 

  151. John, B. & Crispe, I. N. Passive and active mechanisms trap activated CD8+ T cells in the liver. J. Immunol. 172, 5222–5229 (2004).

    CAS  PubMed  Google Scholar 

  152. Oo, Y. H. et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J. Immunol. 184, 2886–2898 (2010).

    CAS  PubMed  Google Scholar 

  153. Adams, D. H. & Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nature Rev. Immunol. 6, 244–251 (2006).

    CAS  Google Scholar 

  154. Kruse, N. et al. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3 regulatory T cells suppressing autoimmune hepatitis. Hepatology 50, 1904–1913 (2009).

    CAS  PubMed  Google Scholar 

  155. Huehn, J. & Hamann, A. Homing to suppress: address codes for Treg migration. Trends Immunol. 26, 632–636 (2005).

    CAS  PubMed  Google Scholar 

  156. Braet, F. & Wisse, E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol. 1, 1 (2002).

    PubMed  PubMed Central  Google Scholar 

  157. Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    CAS  PubMed  Google Scholar 

  158. Adams, D. H., Eksteen, B. & Curbishley, S. M. Immunology of the gut and liver: a love/hate relationship. Gut 57, 838–848 (2008).

    CAS  PubMed  Google Scholar 

  159. Lunz, J. G., Specht, S. M., Murase, N., Isse, K. & Demetris, A. J. Gut-derived commensal bacterial products inhibit liver dendritic cell maturation by stimulating hepatic interleukin-6/signal transducer and activator of transcription 3 activity. Hepatology 46, 1946–1959 (2007).

    CAS  PubMed  Google Scholar 

  160. Chu, C. L. et al. Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRγ. Eur. J. Immunol. 38, 166–173 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Sumpter, T. L., Lunz, J. G., Demetris, A. J. & Thomson, A. W. Molecular regulation of hepatic dendritic cell function and its relation to liver transplant outcome. Transplantation 88, S40–S44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wahl, C., Bochtler, P., Chen, L., Schirmbeck, R. & Reimann, J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology 135, 980–988 (2008).

    CAS  PubMed  Google Scholar 

  163. O'Connell, P. J. et al. Type-1 polarized nature of mouse liver CD8α and CD8α+ dendritic cells: tissue-dependent differences offset CD8α-related dendritic cell heterogeneity. Eur. J. Immunol. 33, 2007–2013 (2003).

    CAS  PubMed  Google Scholar 

  164. Dubois, B. et al. Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology 137, 1019–1028 (2009).

    CAS  PubMed  Google Scholar 

  165. Bertolino, P., Heath, W. R., Hardy, C. L., Morahan, G. & Miller, J. F. Peripheral deletion of autoreactive CD8+ T cells in transgenic mice expressing H-2Kb in the liver. Eur. J. Immunol. 25, 1932–1942 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is currently supported by US National Institutes of Health grant P01 AI81678 and the Roche Organ Transplantation Research Foundation (874,279,717) (to A.W.T.) and by DFG grants SFB 704, SFB TR57, GRK 804 and SFB 670 (to P.A.K.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Oral tolerance

The immunological mechanism whereby the mucosal immune system maintains unresponsiveness to antigens in the mucosal environment that might otherwise induce undesired immune responses.

Portal venous tolerance

The induction of peripheral tolerance following portal venous delivery of antigen (most commonly alloantigen).

Reticulo-endothelial system

The general phagocytic system of the host. It is responsible for the removal and destruction of foreign material and senescent or dead host cells, such as red blood cells.

Transcytosis

The process of transport of material across a cell layer by uptake on one side of the cell into a coated vesicle. The vesicle might then be sorted through the trans-Golgi network and transported to the opposite side of the cell.

Pattern recognition receptor

(PRR). A host receptor (such as Toll-like receptors (TLRs) or NOD-like receptors (NLRs)) that can sense pathogen-associated molecular patterns and initiate signalling cascades that lead to an innate immunity. These receptors can be membrane bound (such as TLRs) or soluble cytoplasmic receptors (such as retinoic acid-inducible gene-I, melanoma differentiation associated gene 5 or NLRs).

Glycocalyx

A carbohydrate-rich coating that covers the outside of many eukaryotic and prokaryotic cells, particularly bacteria, and which, on bacterial cells, provides a protective coat from host factors.

Pathogen-associated molecular patterns

(PAMPs). Molecular patterns that are found in pathogens but not mammalian cells. Examples include terminally mannosylated and polymannosylated compounds, which bind the mannose receptor, and various microbial products, such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA, which bind to Toll-like receptors.

Acute phase proteins

A group of proteins, including C-reactive protein, serum amyloid A, fibrinogen and α1-acid glycoprotein, that are secreted into the blood in increased or decreased quantities by hepatocytes in response to trauma, inflammation or disease. These proteins can be inhibitors or mediators of inflammatory processes.

Indoleamine 2,3-dioxygenase

(IDO). An intracellular haem-containing enzyme that catalyses the oxidative catabolism of tryptophan. Insufficient availability of tryptophan can lead to T cell apoptosis and anergy.

Glisson's capsule

The capsule of the liver. A layer of connective tissue that surrounds the liver and ensheathes the hepatic artery, portal vein and bile ducts within the liver.

FMS-like tyrosine kinase 3 ligand

(FLT3L). An endogenous cytokine that stimulates the proliferation of stem and progenitor cells through binding to the FLT3 receptor (a type III receptor tyrosine kinase member of the platelet-derived growth factor family). FLT3L administration substantially increases the number of dendritic cells in lymphoid and non-lymphoid tissues.

Portal-associated lymphoid tissue

(PALT). An inducible, liver-specific immune tissue that may act as a first line of defence of the lymphatic pathway, as well as a site of local induction of immunity in the liver.

Ischaemia–reperfusion injury

Cellular damage caused by the return of a blood supply to a tissue after a period of inadequate blood supply. The absence of oxygen and nutrients causes cellular damage such that restoration of the blood flow results in inflammation.

Danger-associated molecular pattern

(DAMP). As a result of cellular stress, cellular damage and non-physiological cell death, DAMPs are released from the degraded stroma (for example, hyaluronate), from the nucleus (for example, high-mobility group box 1 protein (HMGB1)) and from the cytoplasm (for example, adenosine triphosphate, uric acid, S100 calcium-binding proteins and heat-shock proteins). Such DAMPs are thought to elicit local inflammatory reactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, A., Knolle, P. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10, 753–766 (2010). https://doi.org/10.1038/nri2858

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2858

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing