T CELL RESPONSES

PU.1 in time saves nine

The differentiation of T helper (T_{u}) cell subsets is controlled by unique sets of transcription factors; these regulate the expression of cytokines and other genes that are important for the effector functions of each subset. Recent reports have described an interleukin-9 (IL-9)-producing population of T cells, which is induced in vitro following culture with IL-4 and transforming growth factor- β (TGF β). These cells are related to the T_u2 cell lineage but express lower levels of T_u2-type cytokines, and they have therefore been proposed to be a new subset of ' T_{μ} 9' cells. However, this classification has been controversial owing to the lack of any T₁9 cellspecific transcription factor (or factors). Now, Chang et al. have strengthened the case for a 'T_u9 cell lineage' by identifying PU.1 as a

transcription factor that uniquely promotes the T_H^0 cell phenotype.

Previous studies showed that PU.1 can suppress the production of T₁₁2-type cytokines, prompting the authors to examine the role of this transcription factor in the induction of $T_{_{\rm H}}$ 9 cells. Following culture under \ddot{T}_{H} 9 cell-promoting conditions, PU.1-deficient T cells produced substantially lower levels of IL-9, suggesting that PU.1 was important for T_{H} 9 cell development. In further support of this, there were higher levels of PU.1-encoding mRNA in $T_{H}9$ cells than in $T_{H}1$, $T_{H}2$ or T_u17 cells. PU.1 was required for chromatin modifications at the Il9 locus, with chromatin immunoprecipitation and DNA-affinity precipitation assays showing direct binding of PU.1 to conserved non-coding sequences in the Il9 pro-

moter. Importantly, the authors found human T_H9 cells can also be induced *in vitro* in response to culture with IL-4 and TGF β , and PU.1 was also necessary for human T_H9 cell differentiation.

Next, the authors investigated the function of T₁₁9 cells *in vivo*, examining their roles in allergic responses. In a model of allergic airway inflammation, mice with a T cell-specific deficiency in PU.1 showed lower levels of lung inflammation than wild-type mice. This was characterized by fewer inflammatory infiltrates and decreased airway hyperresponsiveness and seemed to be due to the specific absence of T_{μ} 9 cells, as both T_{μ} 2 and T_{μ} 17 cells developed normally in these animals. Treating wild-type mice with IL-9-specific blocking antibodies during the induction of airway inflammation led to a similar decrease in inflammation, suggesting that IL-9 itself was important for promoting the inflammatory response in the lung.

The identification of PU.1 as a specific transcription factor for T_H9 cells suggests that these cells may be a bona fide T_H cell lineage. Furthermore, these data suggest that targeting IL-9 could be a useful therapy for treating patients with asthma and other allergies.

Yvonne Bordon

ORIGINAL RESEARCH PAPER Chang, H.-C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. *Nature Immunol.* 2 May 2010 (doi:10.1038/ni.1867)