Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Proteasomes in immune cells: more than peptide producers?

Abstract

When cells are stimulated with pro-inflammatory cytokines, most of their constitutively expressed proteasomes are replaced with immunoproteasomes, which increase the production of peptides for presentation on MHC class I molecules. In addition, cortical thymic epithelial cells selectively express a type of proteasome known as the thymoproteasome that is required for the positive selection of thymocytes. Here, we discuss how these specialized types of proteasome shape the T cell receptor repertoire of cytotoxic T lymphocytes and propose that immunoproteasomes have functions, in addition to antigen processing, that influence cytokine production and T cell differentiation, survival and function. We also discuss how inhibitors of immunoproteasomes can suppress undesired T cell responses in autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen processing in the MHC class I-restricted pathway.
Figure 2: Subunit composition of the active sites of the constitutive proteasome, immunoproteasome and thymoproteasome.
Figure 3: Proteasomes in positive and negative selection in the thymus.

Similar content being viewed by others

References

  1. Heath, W. R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    Article  CAS  Google Scholar 

  2. Hammer, G. E., Kanaseki, T. & Shastri, N. The final touches make perfect the peptide–MHC class I repertoire. Immunity 26, 397–406 (2007).

    Article  CAS  Google Scholar 

  3. Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4Å resolution. Science 268, 533–539 (1995).

    Article  Google Scholar 

  4. Seemüller, E. et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268, 579–582 (1995).

    Article  Google Scholar 

  5. Finley, D. Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    Article  CAS  Google Scholar 

  6. Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of an 11S regulator of the multicatalytic proteinase. J. Biol. Chem. 267, 22369–22377 (1992).

    CAS  PubMed  Google Scholar 

  7. Chu-Ping, M., Slaughter, C. A. & DeMartino, G. N. Identification, purification and characterization of a protein activator (PA28) of the 20S proteasome (Macropain). J. Biol. Chem. 267, 10515–10523 (1992).

    Google Scholar 

  8. Hendil, K. B., Khan, S. & Tanaka, K. Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem. J. 332, 749–754 (1998).

    Article  Google Scholar 

  9. Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166–168 (1996).

    Article  CAS  Google Scholar 

  10. van Hall, T. et al. Differential influence on cytotoxic T lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28. J. Exp. Med. 192, 483–494 (2000).

    Article  CAS  Google Scholar 

  11. Murata, S. et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J. 20, 5898–5907 (2001).

    Article  CAS  Google Scholar 

  12. Dick, T. P. et al. Coordinated dual cleavages by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253–262 (1996).

    Article  CAS  Google Scholar 

  13. Li, J. et al. Lysine 188 substitutions convert the pattern of proteasome activation by REGγ to that of REGs α and β. EMBO J. 20, 3359–3369 (2001).

    Article  CAS  Google Scholar 

  14. Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    Article  CAS  Google Scholar 

  15. Rammensee, H. G., Bachmann, J., Emmerich, N. P. N., Bachor, O. A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  Google Scholar 

  16. Glynne, R. et al. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353, 357–360 (1991).

    Article  CAS  Google Scholar 

  17. Kelly, A. et al. Second proteasome-related gene in the human MHC class II region. Nature 353, 667–668 (1991).

    Article  CAS  Google Scholar 

  18. Ortiz-Navarette, V. et al. Subunit of the 20S proteasome (multicatalytic proteinase) encoded by the major histocompatibilty complex. Nature 353, 662–664 (1991).

    Article  Google Scholar 

  19. Brown, M. G., Driscoll, J. & Monaco, J. J. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353, 355–357 (1991).

    Article  CAS  Google Scholar 

  20. Aki, M. et al. Interferon-γ induces different subunit organizations and functional diversity of proteasomes. J. Biochem. 115, 257–269 (1994).

    Article  CAS  Google Scholar 

  21. Groettrup, M. et al. A third interferon-γ-induced subunit exchange in the 20S proteasome. Eur. J. Immunol. 26, 863–869 (1996).

    Article  CAS  Google Scholar 

  22. Nandi, D., Jiang, H. & Monaco, J. J. Identification of MECL-1 (LMP-10) as the third IFN-γ-inducible proteasome subunit. J. Immunol. 156, 2361–2364 (1996).

    CAS  PubMed  Google Scholar 

  23. Hisamatsu, H. et al. Newly identified pair of proteasomal subunits regulated reciprocally by interferon γ. J. Exp. Med. 183, 1–10 (1996).

    Article  Google Scholar 

  24. Akiyama, K. et al. cDNA cloning and interferon γ down-regulation of proteasomal subunits X and Y. Science 265, 1231–1234 (1994).

    Article  CAS  Google Scholar 

  25. Boes, B. et al. Interferon γ stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J. Exp. Med. 179, 901–909 (1994).

    Article  CAS  Google Scholar 

  26. Khan, S. et al. Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J. Immunol. 167, 6859–6868 (2001).

    Article  CAS  Google Scholar 

  27. Barton, L. F., Cruz, M., Rangwala, R., Deepe, G. S. & Monaco, J. J. Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection. J. Immunol. 169, 3046–3052 (2002).

    Article  CAS  Google Scholar 

  28. Groettrup, M. et al. Structural plasticity of the proteasome and its function in antigen processing. Crit. Rev. Immunol. 21, 339–359 (2001).

    Article  CAS  Google Scholar 

  29. Kloetzel, P. M. Antigen processing by the proteasome. Nature Rev. Mol. Cell Biol. 2, 179–187 (2001).

    Article  CAS  Google Scholar 

  30. Gaczynska, M., Rock, K. L. & Goldberg, A. L. γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

    Article  CAS  Google Scholar 

  31. Driscoll, J., Brown, M. G., Finley, D. & Monaco, J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993).

    Article  CAS  Google Scholar 

  32. Kuckelkorn, U. et al. Incorporation of major histocompatibility complex-encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-γ. Eur. J. Immunol. 25, 2605–2611 (1995).

    Article  CAS  Google Scholar 

  33. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  34. Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75Å resolution. Structure 10, 609–618 (2002).

    Article  CAS  Google Scholar 

  35. Van Kaer, L. et al. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1, 533–541 (1994).

    Article  CAS  Google Scholar 

  36. Fehling, H. J. et al. MHC class I expression in mice lacking proteasome subunit LMP7. Science 265, 1234–1237 (1994).

    Article  CAS  Google Scholar 

  37. Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007).

    Article  CAS  Google Scholar 

  38. Basler, M., Youhnovski, N., van den Broek, M., Przybylski, M. & Groettrup, M. Immunoproteasomes down-regulate presentation of a subdominant T cell epitope from lymphocytic choriomeningitis virus. J. Immunol. 173, 3925–3934 (2004).

    Article  CAS  Google Scholar 

  39. Chen, W. S., Norbury, C. C., Cho, Y. J., Yewdell, J. W. & Bennink, J. R. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T cells at the levels of T cell repertoire and presentation of viral antigens. J. Exp. Med. 193, 1319–1326 (2001).

    Article  CAS  Google Scholar 

  40. Nussbaum, A. K., Rodriguez-Carreno, M. P., Benning, N., Botten, J. & Whitton, J. L. Immunoproteasome-deficient mice mount largely normal CD8+ T cell responses to lymphocytic choriomeningitis virus infection and DNA vaccination. J. Immunol. 175, 1153–1160 (2005).

    Article  CAS  Google Scholar 

  41. Strehl, B. et al. Immunoproteasomes are essential for clearance of Listeria monocytogenes in nonlymphoid tissues but not for induction of bacteria-specific CD8+ T cells. J. Immunol. 177, 6238–6244 (2006).

    Article  CAS  Google Scholar 

  42. Tu, L. et al. Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection. Eur. J. Immunol. 4 Nov 2009 (doi:10.1002/eji.200939117).

  43. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article  CAS  Google Scholar 

  44. Basler, M., Moebius, J., Elenich, L., Groettrup, M. & Monaco, J. J. An altered T cell repertoire in MECL-1-deficient mice. J. Immunol. 176, 6665–6672 (2006).

    Article  CAS  Google Scholar 

  45. Caudill, C. M. et al. T cells lacking immunoproteasome subunits MECL-1 and LMP7 hyperproliferate in response to polyclonal mitogens. J. Immunol. 176, 4075–4082 (2006).

    Article  CAS  Google Scholar 

  46. Zaiss, D. M. W., de Graaf, N. & Sijts, A. J. A. M. The proteasome immunosubunit multicatalytic endopeptidase complex-like 1 is a T-cell-intrinsic factor influencing homeostatic expansion. Infec. Immun. 76, 1207–1213 (2008).

    Article  CAS  Google Scholar 

  47. Nil, A., Firat, E., Sobek, V., Eichmann, K. & Niedermann, G. Expression of housekeeping and immunoproteasome subunit genes is differentially regulated in positively and negatively selecting thymic stroma subsets. Eur. J. Immunol. 34, 2681–2689 (2004).

    Article  CAS  Google Scholar 

  48. Osterloh, P. et al. Proteasomes shape the repertoire of T cells participating in antigen-specific immune responses. Proc. Natl Acad. Sci. USA 103, 5042–5047 (2006).

    Article  CAS  Google Scholar 

  49. Tomaru, U. et al. Exclusive expression of proteasome subunit β5t in the human thymic cortex. Blood 113, 5186–5191 (2009).

    Article  CAS  Google Scholar 

  50. Murata, S., Takaharna, Y. & Tanaka, K. Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20, 192–196 (2008).

    Article  CAS  Google Scholar 

  51. Ignatowicz, L., Kappler, J. & Marrack, P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–529 (1996).

    Article  CAS  Google Scholar 

  52. Pang, K. C. et al. Immunoproteasome subunit deficiencies impact differentially on two immunodominant influenza-virus-specific CD8+ T cell responses. J. Immunol. 177, 7680–7688 (2006).

    Article  CAS  Google Scholar 

  53. Toes, R. E. M. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12 (2001).

    Article  CAS  Google Scholar 

  54. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  Google Scholar 

  55. Bennett, M. K. & Kirk, C. J. Development of proteasome inhibitors in oncology and autoimmune diseases. Curr. Opin. Drug Discov. Devel. 11, 616–625 (2008).

    CAS  PubMed  Google Scholar 

  56. Muchamuel, T. et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Med. 15, 781–787 (2009).

    Article  CAS  Google Scholar 

  57. Ohashi, P. S. et al. Ablation of 'tolerance' and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  Google Scholar 

  58. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  Google Scholar 

  59. Fitzpatrick, L. R., Khare, V., Small, J. S. & Koltun, W. A. Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Digest Dis. Sci. 51, 1269–1276 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Moebius, K. W. Kalim, E. Suzuki and T. Muchamuel for the communication of data before they were accepted for publication. This work was supported by grants from the German Research Foundation (DFG) — GR1517/4-2 and GR1517/5-1 — and the Graduate School Chemical Biology at the University of Constance, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Groettrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Marcus Groettrup's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groettrup, M., Kirk, C. & Basler, M. Proteasomes in immune cells: more than peptide producers?. Nat Rev Immunol 10, 73–78 (2010). https://doi.org/10.1038/nri2687

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing