Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-transcriptional regulons coordinate the initiation and resolution of inflammation

Key Points

  • RNA-binding proteins that control mRNA stability and translation coordinately regulate the expression of proteins that initiate and resolve inflammation.

  • The interferon-γ-activated inhibitor of translation (GAIT) system ensures that inflammatory mediators such as ceruloplasmin, chemokines and chemokine receptors are expressed in a regulated pulse. Transcripts encoding these proteins contain a 29-nucleotide hairpin in their 3′ untranslated regions (the GAIT element) that recruits a multisubunit complex (the GAIT complex) that inhibits translation initiation.

  • Steroid receptor co-activator 3 (SRC3) is a transcriptional co-activator that also functions as a translational co-repressor. SRC3 binds to the translational repressor T cell intracellular antigen 1 (TIA1) and increases its affinity for a regulatory element found in the 3′ untranslated region of tumour necrosis factor transcripts. By this mechanism, SRC3 promotes the initiation and resolution of inflammation.

  • Tristetraprolin (TTP) is a zinc-finger protein that binds adenine- and uridine-rich regulatory elements found in the 3′ untranslated regions of mRNAs encoding both pro- and anti-inflammatory proteins. By promoting the degradation of these transcripts, TTP helps define the nature of the inflammatory response (for example, intense and short-lived versus mild and prolonged).

  • RNA-binding proteins that target adenine- and uridine-rich regulatory elements in the 3′ untranslated regions of transcripts encoding pro- and anti-inflammatory mediators can interact with microRNA-containing RNA-induced silencing complexes to modulate mRNA stability and translation. Examples include TTP–microRNA (miR)-16, fragile X mental retardation syndrome-related 1–miR-369-3 and HuR–let-7.

Abstract

Transcriptional control mechanisms chart the course of the inflammatory response by synthesizing mRNAs encoding proteins that promote or inhibit inflammation. Because these mRNAs can be long-lived, turning off their synthesis does not rapidly stop or change the direction of inflammation. Post-transcriptional mechanisms that modify mRNA stability and/or translation provide more rapid and flexible control of this process and are particularly important in coordinating the initiation and resolution of inflammation. Here, I review the surprising variety of post-transcriptional control mechanisms that regulate the initiation and resolution of inflammation and discuss how these mechanisms are integrated to coordinate this essential process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of translation initiation.
Figure 2: Regulation of mRNA decay.
Figure 3: Modulators of the RNA-induced silencing complex.

Similar content being viewed by others

References

  1. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Ziegler, S. F. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunol. 10, 281–288 (2009).

    Article  CAS  Google Scholar 

  7. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nature Rev. Genet. 8, 533–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Stoecklin, G. & Anderson, P. Posttranscriptional mechanisms regulating the inflammatory response. Adv. Immunol. 89, 1–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, P. Post-transcriptional control of cytokine production. Nature Immunol. 9, 353–359 (2008).

    CAS  Google Scholar 

  10. von Roretz, C. & Gallouzi, I. E. Decoding ARE-mediated decay: is microRNA part of the equation? J. Cell Biol. 181, 189–194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shyu, A. B., Wilkinson, M. F. & van Hoof, A. Messenger RNA regulation: to translate or to degrade. EMBO J. 27, 471–481 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hoffmann, A., Leung, T. H. & Baltimore, D. Genetic analysis of NF-κB/Rel transcription factors defines functional specificities. EMBO J. 22, 5530–5539 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Rev. Immunol. 6, 44–55 (2006).

    Article  CAS  Google Scholar 

  15. Anderson, P. Intrinsic mRNA stability helps compose the inflammatory symphony. Nature Immunol. 10, 233–234 (2009).

    Article  CAS  Google Scholar 

  16. Hesse, D. G. et al. Cytokine appearance in human endotoxemia and primate bacteremia. Surg. Gynecol. Obstet. 166, 147–153 (1988).

    CAS  PubMed  Google Scholar 

  17. Mazumder, B., Sampath, P. & Fox, P. L. Regulation of macrophage ceruloplasmin gene expression: one paradigm of 3′-UTR-mediated translational control. Mol. Cells 20, 167–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mazumder, B. et al. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115, 187–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Sampath, P. et al. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119, 195–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Muhl, H. & Pfeilschifter, J. Anti-inflammatory properties of pro-inflammatory interferon-γ. Int. Immunopharmacol. 3, 1247–1255 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Mazumder, B., Mukhopadhyay, C. K., Prok, A., Cathcart, M. K. & Fox, P. L. Induction of ceruloplasmin synthesis by IFN-γ in human monocytic cells. J. Immunol. 159, 1938–1944 (1997).

    CAS  PubMed  Google Scholar 

  22. Harvey, L. J. & McArdle, H. J. Biomarkers of copper status: a brief update. Br. J. Nutr. 99, S10–S13 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Sampath, P., Mazumder, B., Seshadri, V. & Fox, P. L. Transcript-selective translational silencing by γ interferon is directed by a novel structural element in the ceruloplasmin mRNA 3′ untranslated region. Mol. Cell. Biol. 23, 1509–1519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S. & Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci. 34, 324–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arif, A. et al. Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol. Cell 35, 164–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazumder, B., Seshadri, V., Imataka, H., Sonenberg, N. & Fox, P. L. Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 21, 6440–6449 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kapasi, P. et al. L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol. Cell 25, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukhopadhyay, R. et al. DAPK–ZIPK–L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol. Cell 32, 371–382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vyas, K. et al. Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in γ interferon-activated monocytes. Mol. Cell. Biol. 29, 458–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Ray, P. S. & Fox, P. L. A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J. 26, 3360–3372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ray, P. S. et al. A stress-responsive RNA switch regulates VEGFA expression. Nature 457, 915–919 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Hamilton, B. J. et al. Separate cis–trans pathways post-transcriptionally regulate murine CD154 (CD40 ligand) expression: a novel function for CA repeats in the 3′-untranslated region. J. Biol. Chem. 283, 25606–25616 (2008). This study reported the identification of a new regulatory element that controls the translation of mRNA encoding CD154, an activation receptor expressed on the surface of activated T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vavassori, S. & Covey, L. R. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol. 6, 259–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Vavassori, S., Shi, Y., Chen, C. C., Ron, Y. & Covey, L. R. In vivo post-transcriptional regulation of CD154 in mouse CD4+ T cells. Eur. J. Immunol. 39, 2224–2232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamilton, B. J., Genin, A., Cron, R. Q. & Rigby, W. F. Delineation of a novel pathway that regulates CD154 (CD40 ligand) expression. Mol. Cell. Biol. 23, 510–525 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Citores, M. J. et al. The dinucleotide repeat polymorphism in the 3′UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus. Ann. Rheum. Dis. 63, 310–317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soderberg, M., Raffalli-Mathieu, F. & Lang, M. A. Identification of a regulatory cis-element within the 3′-untranslated region of the murine inducible nitric oxide synthase (iNOS) mRNA; interaction with heterogeneous nuclear ribonucleoproteins I and L and role in the iNOS gene expression. Mol. Immunol. 44, 434–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Yu, C. et al. An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol. Cell 25, 765–778 (2007). The first example of a transcriptional co-activator that also functions as a translational co-repressor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bakheet, T., Williams, B. R. & Khabar, K. S. ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res. 34, D111–D114 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, G. A. et al. A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996). This report shows that mice lacking TTP develop a spontaneous autoinflammatory disease as a consequence of pathological overexpression of TNF.

    Article  CAS  PubMed  Google Scholar 

  42. Carballo, E. & Blackshear, P. J. Roles of tumor necrosis factor-α receptor subtypes in the pathogenesis of the tristetraprolin-deficiency syndrome. Blood 98, 2389–2395 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Carballo, E., Lai, W. S. & Blackshear, P. J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998). This is the first description of TTP functioning as an mRNA destabilizing factor.

    Article  CAS  PubMed  Google Scholar 

  44. Carballo, E., Lai, W. S. & Blackshear, P. J. Evidence that tristetraprolin is a physiological regulator of granulocyte–macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).

    CAS  PubMed  Google Scholar 

  45. Ogilvie, R. L. et al. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J. Immunol. 174, 953–961 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Sauer, I. et al. Interferons limit inflammatory responses by induction of tristetraprolin. Blood 107, 4790–4797 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, C. Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Linker, K. et al. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression — complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 33, 4813–4827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Phillips, K., Kedersha, N., Shen, L., Blackshear, P. J. & Anderson, P. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Natl Acad. Sci. USA 101, 2011–2016 (2004). Analysis of mice lacking TIA1 and/or TTP revealed a role for post-transcriptional control in the coordinated expression of inflammatory mediators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Datta, S. et al. Tristetraprolin regulates CXCL1 (KC) mRNA stability. J. Immunol. 180, 2545–2552 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ogilvie, R. L. et al. Tristetraprolin mediates interferon-γ mRNA decay. J. Biol. Chem. 284, 11216–11223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stoecklin, G. et al. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J. Biol. Chem. 283, 11689–11699 (2008). This study provided evidence that TTP can regulate the expression of both pro- and anti-inflammatory mediators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sandler, H. & Stoecklin, G. Control of mRNA decay by phosphorylation of tristetraprolin. Biochem. Soc. Trans. 36, 491–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Lykke-Andersen, J. & Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351–361 (2005). This study showed that TTP promotes mRNA decay by directly binding to components of the degradation machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hau, H. H. et al. Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J. Cell. Biochem. 100, 1477–1492 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Y. L. et al. Differential regulation of ARE-mediated TNFα and IL-1β mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem. Biophys. Res. Commun. 346, 160–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Smoak, K. & Cidlowski, J. A. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol. Cell. Biol. 26, 9126–9135 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cao, H., Urban, J. F. Jr & Anderson, R. A. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes. Obesity (Silver Spring) 16, 1208–1218 (2008).

    Article  CAS  Google Scholar 

  60. Cao, H., Deterding, L. J. & Blackshear, P. J. Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Rev. Proteomics 4, 711–726 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hitti, E. et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol. 26, 2399–2407 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stoecklin, G., Stubbs, T., Kedersha, N., Blackwell, T. K. & Anderson, P. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313–1324 (2004). Phosphorylation of TTP promotes the assembly of TTP–14-3-3 complexes that are actively excluded from stress granules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tudor, C. et al. The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett. 583, 1933–1938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Franks, T. M. & Lykke-Andersen, J. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev. 21, 719–735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kedersha, N. et al. Stress granules and processing bodies are dynamically liked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun, L. et al. Tristetraprolin (TTP)–14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-α mRNA. J. Biol. Chem. 282, 3766–3777 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lai, W. S., Parker, J. S., Grissom, S. F., Stumpo, D. J. & Blackshear, P. J. Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol. Cell. Biol. 26, 9196–9208 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Mukherjee, N., Lager, P. J., Friedersdorf, M. B., Thompson, M. A. & Keene, J. D. Coordinated posttranscriptional mRNA population dynamics during T-cell activation. Mol. Syst. Biol. 5, 288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schichl, Y. M., Resch, U., Hofer-Warbinek, R. & de Martin, R. Tristetraprolin impairs NF-κB/p65 nuclear translocation. J. Biol. Chem. 284, 29571–29581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schaljo, B. et al. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J. Immunol. 183, 1197–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Emmons, J. et al. Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA 14, 888–902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Essafi-Benkhadir, K., Onesto, C., Stebe, E., Moroni, C. & Pages, G. Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol. Biol. Cell 18, 4648–4658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carrick, D. M., Lai, W. S. & Blackshear, P. J. The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res. Ther. 6, 248–264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, L. et al. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ. Res. 98, 1177–1185 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Niu, J., Azfer, A., Zhelyabovska, O., Fatma, S. & Kolattukudy, P. E. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J. Biol. Chem. 283, 14542–14551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liang, J. et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem. 283, 6337–6346 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009). This study revealed a surprising new function for the zinc-finger protein ZC3H12A in the sequence-specific cleavage of selected target mRNAs.

    Article  CAS  PubMed  Google Scholar 

  79. Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biol. 11, 1157–1163 (2009). Inactivation of miRNA by the addition of terminal uridine residues modulates the expression of the inflammatory cytokine IL-6.

    Article  CAS  PubMed  Google Scholar 

  80. Norbury, C. J. Special issue: Novel RNA nucleotidyl transferases and gene regulation. Preface. Biochim. Biophys. Acta 1779, 205 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Mullen, T. E. & Marzluff, W. F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22, 50–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  Google Scholar 

  83. Kim, W. J., Kim, J. H. & Jang, S. K. Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. EMBO J. 26, 5020–5032 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dixon, D. A. et al. Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J. Exp. Med. 198, 475–481 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Young, L. E. et al. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 136, 1669–1679 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Backlund, M. G., Mann, J. R. & Dubois, R. N. Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology 69, S28–S32 (2005).

    Article  CAS  Google Scholar 

  87. Ostareck, D., Ostareck-Lederer, A., Shatsky, I. & Hentze, M. Lipoxygense mRNA silencing in erythroid differentiation: The 3′ UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001). A regulatory element in the 3′ UTR of lipoxygenase transcripts recruits factors that prevent 60S ribosomal subunit joining.

    Article  CAS  PubMed  Google Scholar 

  88. Thiele, B. J. et al. Expression of leukocyte-type 12-lipoxygenase and reticulocyte-type 15-lipoxygenase in rabbits. Adv. Exp. Med. Biol. 447, 45–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol. 28, 551–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Straus, D. S. et al. 15-deoxy-δ 12, 14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc. Natl Acad. Sci. USA 97, 4844–4849 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Hilliard, A. et al. Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J. Immunol. 177, 8095–8102 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Baltimore, D., Boldin, M. P., O'Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immune cell development and function. Nature Immunol. 9, 839–845 (2008).

    Article  CAS  Google Scholar 

  94. Lal, A. et al. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garnon, J. et al. Fragile X-related protein FXR1P regulates proinflammatory cytokine tumor necrosis factor expression at the post-transcriptional level. J. Biol. Chem. 280, 5750–5763 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Vasudevan, S. & Steitz, J. A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118 (2007). This report shows that under conditions of serum starvation, components of the RISC can enhance, rather than inhibit, mRNA translation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009). ARE-binding proteins can cooperate with the RISC to modulate protein expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  Google Scholar 

  100. Lu, J. Y., Sadri, N. & Schneider, R. J. Endotoxic shock in Auf1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20, 3174–3184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bufler, P., Gamboni-Robertson, F., Azam, T., Kim, S. H. & Dinarello, C. A. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem. J. 381, 503–510 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shim, J., Lim, H., Yates, J. R. & Karin, M. Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell 10, 1331–1344 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Shi, L., Godfrey, W., Lin, J., Zhao, G. & Kao, P. NF90 regulates inducible IL-2 gene expression in T cells. J. Exp. Med. 204, 971–977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stoecklin, G., Ming, X. F., Looser, R. & Moroni, C. Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol. Cell. Biol. 20, 3753–3763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yarovinsky, T. O., Butler, N. S., Monick, M. M. & Hunninghake, G. W. Early exposure to IL-4 stabilizes IL-4 mRNA in CD4+ T cells via RNA-binding protein HuR. J. Immunol. 177, 4426–4435 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Neininger, A. et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 277, 3065–3068 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Paschoud, S. et al. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol. Cell. Biol. 26, 8228–8241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Winzen, R. et al. Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol. Cell. Biol. 27, 8388–8400 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bamba, S. et al. Regulation of IL-11 expression in intestinal myofibroblasts: role of c-Jun AP-1- and MAPK-dependent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G529–G538 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Piecyk, M. et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. EMBO J. 19, 4154–4163 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, J. G. et al. LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation. J. Immunol. 176, 2105–2113 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Grosset, C. et al. In vivo studies of translational repression mediated by the granulocyte–macrophage colony-stimulating factor AU-rich element. J. Biol. Chem. 279, 13354–13362 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Brown, C. Y., Lagnado, C. A. & Goodall, G. J. A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc. Natl Acad. Sci. USA 93, 13721–13725 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Putland, R. A. et al. RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Mol. Cell. Biol. 22, 1664–1673 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Whittemore, L. A. & Maniatis, T. Postinduction turnoff of β-interferon gene expression. Mol. Cell. Biol. 10, 1329–1337 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lindstein, T., June, C. H., Ledbetter, J. A., Stella, G. & Thompson, C. B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Mavropoulos, A., Sully, G., Cope, A. P. & Clark, A. R. Stabilization of IFN-γ mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells. Blood 105, 282–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Pastore, S. et al. ERK1/2 regulates epidermal chemokine expression and skin inflammation. J. Immunol. 174, 5047–5056 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Atasoy, U. et al. Regulation of eotaxin gene expression by TNF-α and IL-4 through mRNA stabilization: involvement of the RNA-binding protein HuR. J. Immunol. 171, 4369–4378 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Rousseau, S. et al. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO J. 21, 6505–6514 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stoeckle, M. Y. Post-transcriptional regulation of gro α, β, γ, and IL-8 mRNAs by IL-1β. Nucleic Acids Res. 19, 917–920 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Croft, D., McIntyre, P., Wibulswas, A. & Kramer, I. Sustained elevated levels of VCAM-1 in cultured fibroblast-like synoviocytes can be achieved by TNF-α in combination with either IL-4 or IL-13 through increased mRNA stability. Am. J. Pathol. 154, 1149–1158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huwiler, A. et al. ATP potentiates interleukin-1β-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR. J. Biol. Chem. 278, 51758–51769 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Yu, Q., Cok, S. J., Zeng, C. & Morrison, A. R. Translational repression of human matrix metalloproteinases-13 by an alternatively spliced form of T-cell-restricted intracellular antigen-related protein (TIAR). J. Biol. Chem. 278, 1579–1584 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Cok, S. J., Acton, S. J. & Morrison, A. R. The proximal region of the 3′-untranslated region of cyclooxygenase-2 is recognized by a multimeric protein complex containing HuR, TIA-1, TIAR, and the heterogeneous nuclear ribonucleoprotein, U. J. Biol. Chem. 278, 36157–36162 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank V. Salinas for help in researching and drafting the section on post-transcriptional control by zinc-finger proteins. I thank N. Kedersha for critical review of the manuscript. This work was supported by grants from the US National Institutes of Health and the American College of Rheumatology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul Anderson's homepage

Glossary

Transcriptional regulon

The set of genes that are transcribed when a transcription factor is activated. Often these genes are involved in a common functional programme and their expression is coordinately turned on and off.

Post-transcriptional regulon

The set of mRNAs that are targeted by a post-transcriptional control protein that coordinately regulates factors governing mRNA processing such as stability and/or translation. Often these mRNAs encode proteins involved in a common functional programme. Given that each mRNA is present in multiple copies in a cell, these regulons have the potential to coordinate overlapping functions temporally at different locations within the cell.

3′ untranslated region

(3′ UTR). The mRNA sequence extending from the stop codon to the poly(A) tail.

Initiation phase

The part of the inflammatory response in which pro-inflammatory proteins and lipids are synthesized.

Resolution phase

The part of the inflammatory response in which the expression of pro-inflammatory proteins and lipids is turned off and anti-inflammatory proteins and lipids actively reverse the inflammatory process.

Adenine- and uridine-rich element

(ARE). An RNA domain found in the 3′ UTR of many RNAs that promotes silencing or decay.

MicroRNA

(miRNA). A single-stranded RNA, 23 nucleotides in length, that is derived from hairpin-containing transcripts and binds to argonaute proteins as part of the RNA-induced silencing complex.

tRNA multisynthetase complex

(MSC). A high molecular weight complex composed of several aminoacyl tRNA synthetases and other proteins.

Cytosine- and adenine-rich instability element

(CARE). A motif that is found in the 3′ UTR of transcripts, including those of CD154, that recruits HNRNPL to repress translation initiation.

Cytosine- and uridine-rich instability element

(CURE). A motif that is found in the 3′ UTR of transcripts, including those of CD154, that recruits the polypyrimidine tract binding protein to regulate mRNA stability.

Luciferase reporter transcript

An mRNA with an open reading frame encoding luciferase, a fluorescent protein (the expression of which is easily quantifiable), and a 3′ UTR, which contains regulatory elements that control mRNA stability and translation.

Capped mRNA

A transcript that begins with a 7-methyl-guanosine residue at the 5′ end.

tRNAimet

The initiator tRNA with an amino acyl link to methionine. This is a special tRNA that is required to initiate translation. It is found in a ternary complex with eIF2 and GTP.

eIF2α

A regulatory subunit of the eukaryotic translation initiation factor 2 complex that is part of a larger ternary complex (eIF2–GTP–tRNAimet) that positions the initiator methionine at the AUG initiation codon of an mRNA and enables ribosome joining to commence protein translation. Phosphorylation of eIF2α by stress-activated kinases decreases the availability of the ternary complex and inhibits protein translation.

Argonaute protein

A member of a family of proteins associated with microRNAs, containing both a PIWI (P-element induced wimpy testis) domain and a PAX (PIWI Argonaute Zwille) domain. A subset of argonaute proteins have endonuclease activity and cleave mRNAs, whereas others only silence translation.

Differentiation control element

(DICE). A cytosine- and uridine-rich sequence found in the 3′ UTR of 15-lipoxygenase transcripts that recruits hnRNPE1 and hnRNPK to repress translation initiation.

RNA-induced silencing complex

(RISC). A ribonucleoprotein complex, composed of argonaute proteins bound to miRNAs, that promotes mRNA decay and translational repression of target transcripts.

Seed region

Nucleotides 2–7 from the 5′ end of miRNAs that interact with complementary sequences in the 3′ untranslated region of target mRNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol 10, 24–35 (2010). https://doi.org/10.1038/nri2685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing