B CELL RESPONSES

Regulating receptor editing

"

...NF- κ B ... does seem to have a role in preventing the development of self-reactive B cells by modulating receptor editing.

When the B cell receptor (BCR) on an immature B cell recognizes self antigen, receptor editing occurs during which immunoglobulin light chain rearrangements continue in order to change the BCR specificity. Previous studies addressing the role of nuclear factor-κB (NF-κB) in B cell development have yielded conflicting results. Now, the results of a study by Cadera *et al.* point to a possible role for NF-κB in receptor editing.

The authors took advantage of the fact that NF- κ B directly regulates the activity of inhibitor of NF- κ B α (I κ B α). So, they looked at the activity of NF- κ B using a targeted mutant mouse in which β -galactosidase (β -gal) expression reports the activity of I κ B α (I κ B α ^{+/lacZ} mouse). Having

first confirmed that known activators of NF- κ B also induced β -gal expression, the authors looked at β -gal expression during B cell development from bone marrow cells. Stage-specific β -gal expression was observed, with a peak of expression in pre-B cells. Using real-time reverse transcription PCR to quantify various light chain locus transcripts, they found that β -gal⁺ pre-B cells had increased light chain replacement or editing gene rearrangements compared with β -gal⁻ pre-B cells. Furthermore, retroviral infection of an IkBa superrepressor (which inhibits the activation of NF- κ B through the classical pathway) in primary bone marrow cell cultures resulted in diminished immunoglobulin light λ -chain (Ig λ) rearrangements and reduced Igk accessibility, suggesting that inhibiting NF-KB can downregulate immunoglobulin light chain gene rearrangement. Various markers of receptor editing, including recombining sequence gene rearrangements (which are considered a hallmark of receptor editing) and secondary Igk gene rearrangements, were observed in β -gal⁺ pre-B cells and not β -gal⁻ pre-B cells, showing that IkBa expression correlates with receptor editing.

To confirm that NF-κB has a role in receptor editing, IκBα^{+/lacZ} mice were crossed with various BCR knock-in mice to generate mice expressing either a self-specific BCR or an innocuous BCR. In the two mouse lines expressing a self-specific BCR, in which the developing B cells are almost all undergoing receptor editing, most of the B cells expressed I κ B α , as measured by β -gal expression. By contrast, most of the B cells from the mice expressing an innocuous BCR, in which receptor editing was not needed, did not express the β -gal reporter gene.

So, how might NF- κ B mediate the regulation of receptor editing? Transcripts of many NF- κ B target genes were quantified using reverse transcription PCR. This showed a fourfold increase in interferonregulatory factor 4 (IRF4) transcripts in β -gal⁺ pre-B cells compared with β -gal⁻ pre-B cells. This implies that NF- κ B could be acting through IRF4, which has previously been shown to have a role in pre-B cell development and receptor editing.

This study shows that although NF- κ B may not have an essential role in B cell development *per se*, it does seem to have a role in preventing the development of self-reactive B cells by modulating receptor editing.

Elaine Bell

ORIGINAL RESEARCH PAPER Cadera, E. J. et al. NF-κB activity marks cells engaged in receptor editing. J. Exp. Med. 6 Jul 2009 (doi:10.1084/ jem.20082815)