Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence

Key Points

  • Secondary lymphoid organs (SLOs) are the central organizing platform for the immune system's daily 'business': coping with infectious challenges from the environment.

  • The following functional building blocks represent the basic structural entities of SLOs: first, input channels for pathogens, lymphocytes, and antigen-presenting cells (APCs), second, distribution channels for the communication between third, the antigen-sampling zone, fourth, the T-cell zone and fifth, the B-cell zone.

  • The microenvironment within SLOs is required for productive lymphocyte–APC encounters, particularly when limited amounts of antigen and low precursor frequencies of cognate lymphocytes are available.

  • A bell-shaped correlation links inflammatory stimuli from microorganisms to lymphoid structure and immunocompetence: on the one hand, low-level stimulation through intestinal microorganisms fosters optimal morphological integrity and functionality of SLOs; whereas, on the other hand, overwhelming inflammatory stimuli can lead to the disruption of SLO integrity and to loss of immunocompentence.

  • SLOs are an excellent example of reciprocity between anatomical form and organ function. This plasticity, as the collective result of individual cellular decisions, gives the host the best chance to fight invading microorganisms and to survive.

Abstract

Secondary lymphoid organs (SLOs) are tissues that facilitate the induction of adaptive immune responses. These organs capture pathogens to limit their spread throughout the body, bring antigen-presenting cells into productive contact with their cognate lymphocytes and provide niches for the differentiation of immune effector cells. Therefore, the microanatomy of SLOs defines the ability of an organism to respond to pathogens. SLO microarchitecture is, at the same time, extremely adaptable to environmental changes. In this Review, we discuss recent insights into the function and plasticity of the SLO microenvironment with regards to antimicrobial immune defence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional building blocks of an SLO.
Figure 2: Microstructure of the antigen-sampling zones in lymph nodes and spleen.
Figure 3: The integrity of lymphoid microenvironments determines the immunocompetence of the host.
Figure 4: Inflammation alters the integrity of SLO microenvironments and the immunocompetence of the host.

Similar content being viewed by others

References

  1. Sullivan, L. H. The tall office building artistically considered. Lippincott's Magazine [online] (1896).

    Google Scholar 

  2. Cose, S., Brammer, C., Khanna, K. M., Masopust, D. & Lefrancois, L. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur. J. Immunol. 36, 1423–1433 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Feuerer, M. et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Med. 9, 1151–1157 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Cavanagh, L. L. et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nature Immunol. 6, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  5. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007). This study identifies CD169+ macrophages that line the SCS of lymph nodes as essential for the capture of viruses and the initiation of antiviral B-cell responses.

    Article  CAS  PubMed  Google Scholar 

  7. Cervantes-Barragan, L. et al. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109, 1131–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  9. Mempel, T. R., Henrickson, S. E. & von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nature Rev. Immunol. 3, 269–279 (2003).

    Article  CAS  Google Scholar 

  11. Karrer, U. et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11−/−) mutant mice. J. Exp. Med. 185, 2157–2170 (1997). This study shows that lymph nodes are crucial for the induction of antiviral immune responses. In the absence of lymph nodes, cytopathic virus infection resulted in death of the animals, whereas infection with a non-cytopathic virus led to viral persistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Junt, T. et al. Expression of lymphotoxin β governs immunity at two distinct levels. Eur. J. Immunol. 36, 2061–2075 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Marten, N. W., Stohlman, S. A., Zhou, J. & Bergmann, C. C. Kinetics of virus-specific CD8+-T-cell expansion and trafficking following central nervous system infection. J. Virol. 77, 2775–2778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hickman, H. D. et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nature Immunol. 9, 155–165 (2008). This paper shows that presentation of viral antigen at the periphery of the lymph node is important for the priming of antiviral CD8+ T cells.

    Article  CAS  Google Scholar 

  17. Gewurz, B. E., Gaudet, R., Tortorella, D., Wang, E. W. & Ploegh, H. L. Virus subversion of immunity: a structural perspective. Curr. Opin. Immunol. 13, 442–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wertheim, H. F. et al. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med. 5, e17 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Eberl, G. From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends Immunol. 28, 423–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Soderberg, K. A. et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc. Natl Acad. Sci. USA 102, 16315–16320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Schwab, S. R. & Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunol. 8, 1295–1301 (2007).

    Article  CAS  Google Scholar 

  23. Germain, R. N. et al. Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol. Rev. 221, 163–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005). This study describes antigen sampling by lymph-node-resident DCs from within the FRC-conduit system.

    Article  CAS  PubMed  Google Scholar 

  25. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fenner, F. Mouse-pox; infectious ectromelia of mice; a review. J. Immunol. 63, 341–373 (1949).

    CAS  PubMed  Google Scholar 

  27. Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ludewig, B. et al. Induction of optimal anti-viral neutralizing B cell responses by dendritic cells requires transport and release of virus particles in secondary lymphoid organs. Eur. J. Immunol. 30, 185–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Aichele, P. et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 171, 1148–1155 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Han, Y., van Rooijen, N. & Cutler, J. E. Binding of Candida albicans yeast cells to mouse popliteal lymph node tissue is mediated by macrophages. Infect. Immun. 61, 3244–3249 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Buiting, A. M., De Rover, Z., Kraal, G. & van Rooijen, N. Humoral immune responses against particulate bacterial antigens are dependent on marginal metallophilic macrophages in the spleen. Scand. J. Immunol. 43, 398–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Manuelidis, L. et al. Follicular dendritic cells and dissemination of Creutzfeldt–Jakob disease. J. Virol. 74, 8614–8622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorak, P. M., Engwerda, C. R. & Kaye, P. M. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28, 687–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Seiler, P. et al. Crucial role of marginal zone macrophages and marginal zone metallophils in the clearance of lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 27, 2626–2633 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nature Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  Google Scholar 

  36. Ochsenbein, A. F. & Zinkernagel, R. M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21, 624–630 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nature Immunol. 8, 992–1000 (2007).

    Article  CAS  Google Scholar 

  38. Geijtenbeek, T. B. et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100, 2908–2916 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kang, Y. S. et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc. Natl Acad. Sci. USA. 101, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kraal, G., van der Laan, L. J., Elomaa, O. & Tryggvason, K. The macrophage receptor MARCO. Microbes Infect. 2, 313–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Y. et al. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J. Immunol. 175, 8173–8180 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Qi, H., Egen, J. G., Huang, A. Y. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Muller, S. et al. Role of an intact splenic microarchitecture in early lymphocytic choriomeningitis virus production. J. Virol. 76, 2375–2383 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eloranta, M. L. & Alm, G. V. Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-α/β producers in mice upon intravenous challenge with herpes simplex virus. Scand. J. Immunol. 49, 391–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Probst, H. C. et al. Histological analysis of CD11cDTR/GFP mice after in vivo depletion of dendritic cells. Clin. Exp. Immunol. 141, 398–404 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manolova, V. et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404–1413 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farr, A. G. et al. Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med. 176, 1477–1482 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Katakai, T. et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int. Immunol. 16, 1133–1142 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Nolte, M. A. et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J. Exp. Med. 198, 505–512 (2003). This study reveals that the conduit system in the spleen has an important role in the distribution of both blood-borne and locally produced molecules, and provides a framework for directing lymphocyte migration and the organization of the white pulp of the spleen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. MartIn-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marsland, B. J. et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Webster, B. et al. Regulation of lymph node vascular growth by dendritic cells. J. Exp. Med. 203, 1903–1913 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Forster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nature Rev. Immunol. 8, 362–371 (2008).

    Article  CAS  Google Scholar 

  62. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nature Immunol. 8, 1076–1085 (2007).

    Article  CAS  Google Scholar 

  63. Baekkevold, E. S. et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med. 193, 1105–1112 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunol. 8, 1255–1265 (2007). This study reveals that access of T cells to IL-7-producing FRCs in lymph nodes is crucial for T-cell homeostasis.

    Article  CAS  Google Scholar 

  65. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440, 890–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006). This study shows that T cells are in continuous intimate contact with FRCs as they migrate through the T-cell zone and that FRCs delimit the borders of the T-cell zone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature Immunol. 8, 181–190 (2007). This study reveals that peripheral tolerance can not only be mediated by DCs in SLOs that have taken up antigen in peripheral tissues but also by stromal cells in the lymph node, which synthesize and present peripheral tissue antigens directly to T cells.

    Article  CAS  Google Scholar 

  68. Thomas, S., Kolumam, G. A. & Murali-Krishna, K. Antigen presentation by nonhemopoietic cells amplifies clonal expansion of effector CD8 T cells in a pathogen-specific manner. J. Immunol. 178, 5802–5811 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Jones, S., Horwood, N., Cope, A. & Dazzi, F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J. Immunol. 179, 2824–2831 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Mueller, S. N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl Acad. Sci. USA 104, 15430–15435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Svensson, M., Maroof, A., Ato, M. & Kaye, P. M. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805–816 (2004). This paper shows that stromal cells from mice that have been infected with L. donovani support the differentiation of CD11clowCD45RB+ IL-10-producing regulatory DCs from lineage (Lin)KIT+ progenitor cells.

    Article  CAS  PubMed  Google Scholar 

  72. Henrickson, S. E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nature Immunol. 9, 282–291 (2008).

    Article  CAS  Google Scholar 

  73. Scholer, A., Hugues, S., Boissonnas, A., Fetler, L. & Amigorena, S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28, 258–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Tumanov, A. V. et al. Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunol. Rev. 195, 106–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Junt, T. et al. CXCR5-dependent seeding of follicular niches by B and Th cells augments antiviral B cell responses. J. Immunol. 175, 7109–7116 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Junt, T. et al. Antiviral immune responses in the absence of organized lymphoid T cell zones in plt/plt mice. J. Immunol. 168, 6032–6040 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Junt, T. et al. Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J. Immunol. 173, 6684–6693 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Scandella, E. et al. Dendritic cell-independent B cell activation during acute virus infection: a role for early CCR7-driven B–T helper cell collaboration. J. Immunol. 178, 1468–1476 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Mori, S. et al. Mice lacking expression of the chemokines CCL21-ser and CCL19 (plt mice) demonstrate delayed but enhanced T cell immune responses. J. Exp. Med. 193, 207–218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kursar, M. et al. Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. J. Exp. Med. 201, 1447–1457 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Celli, S., Garcia, Z., Beuneu, H. & Bousso, P. Decoding the dynamics of T cell–dendritic cell interactions in vivo. Immunol. Rev. 221, 182–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Khanna, K. M., McNamara, J. T. & Lefrancois, L. In situ imaging of the endogenous CD8 T cell response to infection. Science 318, 116–120 (2007). This study uses MHC class I tetramers to visualize the CD8+ T-cell response in the spleens of mice to L. monocytogenes antigens following infection in situ . Initial CTL activation occurred at the borders of the B- and T-cell zones followed by prolonged cluster formation with APCs, and eventually, CD8+ T-cell exit from the white pulp to the red pulp of the spleen through bridging channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pape, K. A., Catron, D. M., Itano, A. A. & Jenkins, M. K. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26, 491–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Lammermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev. 221, 26–43 (2008).

    Article  PubMed  Google Scholar 

  87. Amino, R. et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature Med. 12, 220–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Allan, R. S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Benedict, C. A. et al. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2, e16 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007). This paper shows that viral infection can lead to the downregulation of constitutive chemokine expression, thereby precipitating a transient period of immunosuppression.

    Article  CAS  PubMed  Google Scholar 

  91. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol. 9, 667–675 (2008). This study shows that the interaction between LTi cells and mesenchymal organizer cells can be reactivated following the infection-associated immunopathological destruction of SLO microenvironments.

    Article  CAS  Google Scholar 

  92. Odermatt, B., Eppler, M., Leist, T. P., Hengartner, H. & Zinkernagel, R. M. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc. Natl Acad. Sci. USA 88, 8252–8256 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Med. 10, 187–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Yasuda, T. et al. Chemokines CCL19 and CCL21 promote activation-induced cell death of antigen-responding T cells. Blood 109, 449–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Pham, T. H., Okada, T., Matloubian, M., Lo, C. G. & Cyster, J. G. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  97. Saleh, S. et al. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110, 4161–4164 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Ato, M., Stager, S., Engwerda, C. R. & Kaye, P. M. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nature Immunol. 3, 1185–1191 (2002).

    Article  CAS  Google Scholar 

  99. Mercer, J. A., Wiley, C. A. & Spector, D. H. Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infections. J. Virol. 62, 987–997 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bogdan, C. et al. Fibroblasts as host cells in latent leishmaniosis. J. Exp. Med. 191, 2121–2130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Weiss, L. Mechanisms of splenic control of murine malaria: cellular reactions of the spleen in lethal (strain 17XL) Plasmodium yoelii malaria in BALB/c mice, and the consequences of pre-infective splenectomy. Am. J. Trop. Med. Hyg. 41, 144–160 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  103. Macpherson, A. J. & Smith, K. Mesenteric lymph nodes at the center of immune anatomy. J. Exp. Med. 203, 497–500 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Siegrist, C. A. Neonatal and early life vaccinology. Vaccine 19, 3331–3346 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005). This study shows that during colonization of germ-free animals with the ubiquitous gut microorganism B. fragilis , a bacterial cell-wall polysaccharide is sufficient to direct the cellular and morphological maturation of the immune system.

    Article  CAS  PubMed  Google Scholar 

  106. Ngo, V. N., Cornall, R. J. & Cyster, J. G. Splenic T zone development is B cell dependent. J. Exp. Med. 194, 1649–1660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mazzucchelli, L. et al. BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J. Clin. Invest. 104, R49–R54 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh, S., Steere, A. C., Stollar, B. D. & Huber, B. T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol. 174, 2860–2869 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Browning, J. L. Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol. Rev. 223, 202–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Zheng, H. et al. How antigen quantity and quality determine T-cell decisions in lymphoid tissue. Mol. Cell Biol. 28, 4040–4051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zinkernagel, R. M. et al. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 156, 199–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Mebius, R. E. Organogenesis of lymphoid tissues. Nature Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  113. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunol. 7, 344–353 (2006).

    Article  CAS  Google Scholar 

  114. Finke, D., Acha-Orbea, H., Mattis, A., Lipp, M. & Kraehenbuhl, J. CD4+CD3 cells induce Peyer's patch development: role of α4β1 integrin activation by CXCR5. Immunity 17, 363–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Tumanov, A. et al. Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues. Immunity 17, 239–250 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Miller for expert help with immunohistology. This work received financial support from the Kanton of St. Gallen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Junt or Burkhard Ludewig.

Related links

Related links

FURTHER INFORMATION

The Ludewig laboratory homepage

Glossary

Isolated lymphoid follicles

Small (150 μm diameter) aggregations of lymphocytes, predominantly B cells and follicular dendritic cells, that are present on the antimesenteric wall of the mouse small intestine.

Tertiary lymphoid tissue

Ectopic lymphoid aggregates that are generated during the process of chronic immune stimulation and that exhibit the structural characteristics of secondary lymphoid organs.

Alymphoplasia

(aly). A spontaneous mutation that is characterized by the systemic absence of lymph nodes and Peyer's patches and an aberrant splenic microarchitecture. The gene responsible for this phenotype was shown to encode nuclear factor-κB-inducing kinase (NIK).

Arteriolar tree

The feed arteriole of lymph nodes and its branches.

Metallophilic macrophage

A macrophage that is located at the border of the white pulp and the marginal zone of the spleen. These cells are stained by silver impregnation, which explains the name.

Immune complexes

Large aggregates of antibodies with cognate antigen. Immune complexes may bind to receptors on antigen-presenting cells, directly or through complement proteins, to trigger immune-effector responses.

High endothelial venule

(HEV). A specialized venule with a cuboidal endothelial lining. HEVs are found in peripheral lymph nodes and Peyer's patches and are used by naive lymphocytes to enter lymphoid tissues.

Pattern-recognition receptor

A host receptor (such as Toll-like receptors) that can sense pathogen-associated molecular patterns and initiate signalling cascades (which involve activation of nuclear factor-κB) that lead to an innate immune response.

Paucity of lymph-node T cells

(plt). A mutation that leads to loss of expression of the chemokines CCL19 and CCL21 in lymphoid organs, resulting in disturbed migration of CCR7-expressing T cells and mature dendritic cells.

Cytokine storm

A sudden surge in the circulating levels of pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, tumour-necrosis factor and interferon-γ.

Activation-induced cell death

(AICD). A form of regulated cell death that is induced during lymphocyte activation. During a normal immune response, most antigen-specific lymphocytes undergo AICD.

Germ-free mouse

A mouse that is born and raised in isolators, without exposure to microorganisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junt, T., Scandella, E. & Ludewig, B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8, 764–775 (2008). https://doi.org/10.1038/nri2414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing