Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Formation and function of the lytic NK-cell immunological synapse

Key Points

  • The immunological synapse can be defined as the orderly rearrangement of molecules in an immune cell at the interface with another cell. In natural killer (NK) cells, the lytic immunological synapse is specialized to facilitate cytotoxic activity against the target cell.

  • The main function of the NK-cell lytic synapse is the coordinated and regulated delivery of diffuse lytic granules to the cell–cell interface, so that their contents may be directionally secreted onto a target cell. Tight regulation of this process may be especially important in NK cells as they can contain abundant lytic granules in the resting state.

  • The NK-cell lytic-synapse formation can be described in three stages — initiation, effector and termination — each consisting of individual steps. The initiation stage establishes a productive interaction between the NK cell and the target cell; the effector stage coordinates the secretion of lytic-granule contents specifically onto the target cell, and the termination stage completes the lysis of the target cell and confers renewed cytolytic capacity on the NK cell.

  • Some steps within the individual stages in the formation and function of the NK-cell synapse are thought to occur in a linear manner. A model is presented in which both known and theoretically sequential cellular events are delineated.

  • There are seven known human genetic diseases that are characterized by defects in specific steps in the formation and function of the NK-cell synapse. Owing to their known molecular pathogenesis, studies of these diseases provide insight into the cell biological processes that facilitate NK-cell lytic-synapse formation. Additional mechanistic understanding of the pathogenesis of the associated clinical phenotype, haematophagocytic lymphohistiocytosis, can also be gained from studying these diseases.

Abstract

The natural killer (NK)-cell immunological synapse is the dynamic interface formed between an NK cell and its target cell. Formation of the NK-cell immunological synapse involves several distinct stages, from the initiation of contact with a target cell to the directed delivery of lytic-granule contents for target-cell lysis. Progression through the individual stages is regulated, and this tight regulation underlies the precision with which NK cells select and kill susceptible target cells (including virally infected cells and cancerous cells) that they encounter during their routine surveillance of the body.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prototypical mature NK-cell lytic synapse.
Figure 2: Model for sequential stages in the formation and function of the NK-cell lytic synapse.
Figure 3: Proposed mechanism of haemophagocytic lymphohistiocytosis (HLH) immunopathogenesis owing to defective NK-cell lytic-synapse function.

Similar content being viewed by others

References

  1. Orange, J. S. & Ballas, Z. K. Natural killer cells in human health and disease. Clin. Immunol. 118, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Wulfing, C., Purtic, B., Klem, J. & Schatzle, J. D. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing. Proc. Natl Acad. Sci. USA 100, 7767–7772 (2003). This reference provides an introduction to the steps of NK-cell immunological synapse formation centred around the cytoskeleton (see also reference 12) and a comparison with the T-cell immunological synapse.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Davis, D. M. & Dustin, M. L. What is the importance of the immunological synapse? Trends Immunol. 25, 323–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunol. 5, 524–530 (2004). An important study that challenges the functional organization of the lytic synapse in CTLs.

    Article  CAS  Google Scholar 

  7. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  8. Mossman, K. D., Campi, G., Groves, J. T. & Dustin, M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001). This is the first definition of the lytic synapse and its organization in CTLs (see references 17 and 18 for comparison with the NK-cell lytic synapse).

    Article  CAS  PubMed  Google Scholar 

  10. Vyas, Y. M., Maniar, H. & Dupont, B. Cutting Edge: differential segregation of the SRC homology 2-containing protein tyrosine phosphatase-1 within the early NK cell immune synapse distinguishes noncytolytic from cytolytic interactions. J. Immunol. 168, 3150–3154 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Almeida, C. R. & Davis, D. M. Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J. Immunol. 177, 6904–6910 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Orange, J. S. et al. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl Acad. Sci. USA 100, 14151–14156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, S., Kawashima, H., Lowe, J. B., Lanier, L. L. & Fukuda, M. Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J. Exp. Med. 202, 1679–1689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Warren, H. S., Altin, J. G., Waldron, J. C., Kinnear, B. F. & Parish, C. R. A carbohydrate structure associated with CD15 (Lewis x) on myeloid cells is a novel ligand for human CD2. J. Immunol. 156, 2866–2873 (1996).

    CAS  PubMed  Google Scholar 

  16. Inoue, H. et al. Lipid rafts as the signaling scaffold for NK cell activation: tyrosine phosphorylation and association of LAT with phosphatidylinositol 3-kinase and phospholipase C-γ following CD2 stimulation. Eur. J. Immunol. 32, 2188–2198 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, D. M. et al. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA 96, 15062–15067 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vyas, Y. M. et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol. 167, 4358–4367 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Barber, D. F., Faure, M. & Long, E. O. LFA-1 contributes an early signal for NK cell cytotoxicity. J. Immunol. 173, 3653–3659 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Riteau, B., Barber, D. F. & Long, E. O. Vav1 phosphorylation is induced by β2 integrin engagement on natural killer cells upstream of actin cytoskeleton and lipid raft reorganization. J. Exp. Med. 198, 469–474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bryceson, Y. T., March, M. E., Barber, D. F., Ljunggren, H. G. & Long, E. O. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J. Exp. Med. 202, 1001–1012 (2005). This study (together with reference 19) uses an insect-cell target that expresses human NK-cell receptor ligands to show that some NK-cell activating receptors induce lytic-granule polarization towards the immunological synapse, whereas others induce degranulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dietrich, J., Cella, M. & Colonna, M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J. Immunol. 166, 2514–2521 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Masilamani, M., Nguyen, C., Kabat, J., Borrego, F. & Coligan, J. E. CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse. J. Immunol. 177, 3590–3596 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Endt, J. et al. Inhibitory receptor signals suppress ligation-induced recruitment of NKG2D to GM1-rich membrane domains at the human NK cell immune synapse. J. Immunol. 178, 5606–5611 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Carpen, O., Virtanen, I., Lehto, V. P. & Saksela, E. Polarization of NK cell cytoskeleton upon conjugation with sensitive target cells. J. Immunol. 131, 2695–2698 (1983). An early description of synapse formation in NK cells, long before the immunological synapse was defined as a biological concept (see also reference 55).

    CAS  PubMed  Google Scholar 

  26. Graham, D. B. et al. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J. Immunol. 177, 2349–2355 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Orange, J. S. et al. Wiskott–Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA 99, 11351–11356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katz, P., Zaytoun, A. M. & Lee, J. H. Jr . Mechanisms of human cell-mediated cytotoxicity. III. Dependence of natural killing on microtubule and microfilament integrity. J. Immunol. 129, 2816–2825 (1982).

    CAS  PubMed  Google Scholar 

  29. Gismondi, A. et al. Cutting Edge: functional role for proline-rich tyrosine kinase 2 in NK cell-mediated natural cytotoxicity. J. Immunol. 164, 2272–2276 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ramoni, C. et al. Differential expression and distribution of ezrin, radixin and moesin in human natural killer cells. Eur. J. Immunol. 32, 3059–3065 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. McCann, F. E. et al. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J. Immunol. 170, 2862–2870 (2003). This study describes the cleft at the NK-cell synapse into which lytic-granule contents can be secreted.

    Article  CAS  PubMed  Google Scholar 

  32. Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382, 265–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Delon, J., Kaibuchi, K. & Germain, R. N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ilani, T., Khanna, C., Zhou, M., Veenstra, T. D. & Bretscher, A. Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin. J. Cell Biol. 179, 733–746 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taner, S. B. et al. Control of immune responses by trafficking cell surface proteins, vesicles and lipid rafts to and from the immunological synapse. Traffic 5, 651–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lou, Z., Jevremovic, D., Billadeau, D. D. & Leibson, P. J. A balance between positive and negative signals in cytotoxic lymphocytes regulates the polarization of lipid rafts during the development of cell-mediated killing. J. Exp. Med. 191, 347–354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giurisato, E. et al. Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse. Mol. Cell Biol. 27, 8583–8599 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Treanor, B. et al. Microclusters of inhibitory killer immunoglobulin-like receptor signaling at natural killer cell immunological synapses. J. Cell Biol. 174, 153–161 (2006). This study describes the presence and function of receptor microclusters for signalling at the NK-cell synapse using an innovative fluorescence resonance energy transfer approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X. et al. CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells. Proc. Natl Acad. Sci. USA 103, 10346–10351 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sancho, D. et al. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J. Cell Biol. 149, 1249–1262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA 92, 5027–5031 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lowin-Kropf, B., Shapiro, V. S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol. 140, 861–871 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez, T. S. et al. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Banerjee, P. P. et al. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J. Exp. Med. 204, 2305–2320 (2007). In this study, the authors show that actin reorganization at the NK-cell lytic synapse is linked to MTOC polarization by CIP4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tskvitaria-Fuller, I. et al. Specific patterns of Cdc42 activity are related to distinct elements of T cell polarization. J. Immunol. 177, 1708–1720 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl Acad. Sci. USA 103, 14883–14888 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morales-Tirado, V. et al. Cutting Edge: selective requirement for the Wiskott–Aldrich syndrome protein in cytokine, but not chemokine, secretion by CD4+ T cells. J. Immunol. 173, 726–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Huse, M., Lillemeier, B. F., Kuhns, M. S., Chen, D. S. & Davis, M. M. T cells use two directionally distinct pathways for cytokine secretion. Nature Immunol. 7, 247–255 (2006).

    Article  CAS  Google Scholar 

  51. Roda-Navarro, P. et al. Dynamic redistribution of the activating 2B4/SAP complex at the cytotoxic NK cell immune synapse. J. Immunol. 173, 3640–3646 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Andzelm, M. M., Chen, X., Krzewski, K., Orange, J. S. & Strominger, J. L. Myosin IIA is required for cytolytic granule exocytosis in human NK cells. J. Exp. Med. 204, 2285–2291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burkhardt, J. K., McIlvain, J. M. Jr, Sheetz, M. P. & Argon, Y. Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J. Cell Sci. 104, 151–162 (1993).

    CAS  PubMed  Google Scholar 

  54. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006). This paper defines an important paradigm for lytic-granule delivery to the immunological synapse in CTLs.

    Article  CAS  PubMed  Google Scholar 

  55. Carpen, O., Virtanen, I. & Saksela, E. Ultrastructure of human natural killer cells: nature of the cytolytic contacts in relation to cellular secretion. J. Immunol. 128, 2691–2697 (1982).

    CAS  PubMed  Google Scholar 

  56. Liu, D. et al. Rapid biogenesis and sensitization of secretory lysosomes in NK cells mediated by target-cell recognition. Proc. Natl Acad. Sci. USA 102, 123–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Goody, R. S., Rak, A. & Alexandrov, K. The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell. Mol. Life Sci. 62, 1657–1670 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Menager, M. M. et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nature Immunol. 8, 257–267 (2007). This study describes the interaction between RAB27A and MUNC13-4 in NK cells that is required for lytic-granule exocytosis, and defines distinct compartments from which the proteins can originate, suggesting an elegant regulatory mechanism.

    Article  CAS  Google Scholar 

  60. Stow, J. L., Manderson, A. P. & Murray, R. Z. SNAREing immunity: the role of SNAREs in the immune system. Nature Rev. Immunol. 6, 919–929 (2006).

    Article  CAS  Google Scholar 

  61. Dulubova, I. et al. Munc18-1 binds directly to the neuronal SNARE complex. Proc. Natl Acad. Sci. USA 104, 2697–2702 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Toonen, R. F. et al. Dissecting docking and tethering of secretory vesicles at the target membrane. Embo J. 25, 3725–3737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marcet-Palacios, M. et al. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochem. Biophys. Res. Commun. 366, 617–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Arneson, L. N. et al. Cutting Edge: syntaxin 11 regulates lymphocyte-mediated secretion and cytotoxicity. J. Immunol. 179, 3397–3401 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Bryceson, Y. T. et al. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110, 1906–1915 (2007). References 64 and 65 define the role of the NK-cell SNARE protein syntaxin-11 in enabling degranulation using RNA interference (reference 64) or naturally occurring human syntaxin-11 mutant NK cells (reference 65).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Casey, T. M., Meade, J. L. & Hewitt, E. W. Organelle proteomics: identification of the exocytic machinery associated with the natural killer cell secretory lysosome. Mol. Cell. Proteomics 6, 767–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, K. H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Wiedemann, A. et al. T-cell activation is accompanied by an ubiquitination process occurring at the immunological synapse. Immunol. Lett. 98, 57–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. McCann, F. E., Eissmann, P., Onfelt, B., Leung, R. & Davis, D. M. The activating NKG2D ligand MHC class I-related chain A transfers from target cells to NK cells in a manner that allows functional consequences. J. Immunol. 178, 3418–3426 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Sivori, S. et al. 2B4 functions as a co-receptor in human NK cell activation. Eur. J. Immunol. 30, 787–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Sandusky, M. M., Messmer, B. & Watzl, C. Regulation of 2B4 (CD244)-mediated NK cell activation by ligand-induced receptor modulation. Eur. J. Immunol. 36, 3268–3276 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Burshtyn, D. N., Shin, J., Stebbins, C. & Long, E. O. Adhesion to target cells is disrupted by the killer cell inhibitory receptor. Curr. Biol. 10, 777–780 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Sims, T. N. et al. Opposing effects of PKCθ and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129, 773–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Ullberg, M. & Jondal, M. Recycling and target binding capacity of human natural killer cells. J. Exp. Med. 153, 615–628 (1981).

    Article  CAS  PubMed  Google Scholar 

  75. Bhat, R. & Watzl, C. Serial killing of tumor cells by human natural killer cells — enhancement by therapeutic antibodies. PLoS ONE 2, e326 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Isaaz, S., Baetz, K., Olsen, K., Podack, E. & Griffiths, G. M. Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur. J. Immunol. 25, 1071–1079 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Pandey, R., DeStephan, C. M., Madge, L. A., May, M. J. & Orange, J. S. NKp30 ligation induces rapid activation of the canonical NF-κB pathway in NK cells. J. Immunol. 179, 7385–7396 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, J., Zhang, J., Lichtenheld, M. G. & Meadows, G. G. A role for NF-κB activation in perforin expression of NK cells upon IL-2 receptor signaling. J. Immunol. 169, 1319–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Orange, J. S. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4, 1545–1558 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Orange, J. S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 6, 399–409 (2006).

    Article  PubMed  Google Scholar 

  81. Henter, J. I. et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 48, 124–131 (2007).

    Article  Google Scholar 

  82. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Nedvetzki, S. et al. Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood 109, 3776–3785 (2007). This study is an important demonstration of the ability of NK cells to form lytic synapses with activated macrophages, which has clear implications for the pathogenesis of HLH.

    Article  CAS  PubMed  Google Scholar 

  84. Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Marcenaro, S. et al. Analysis of natural killer cell function in familial hemophagocytic lymphohistiocytosis (FHL). Defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood 108, 2316–2323 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C. & Springer, T. A. Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and p150, 95 glycoproteins cause leukocyte adhesion deficiency. Cell 50, 193–202 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Krensky, A. M. et al. Heritable lymphocyte function-associated antigen-1 deficiency: abnormalities of cytotoxicity and proliferation associated with abnormal expression of LFA-1. J. Immunol. 135, 3102–3108 (1985).

    CAS  PubMed  Google Scholar 

  88. Kohl, S., Springer, T. A., Schmalstieg, F. C., Loo, L. S. & Anderson, D. C. Defective natural killer cytotoxicity and polymorphonuclear leukocyte antibody-dependent cellular cytotoxicity in patients with LFA-1/OKM-1 deficiency. J. Immunol. 133, 2972–2978 (1984).

    CAS  PubMed  Google Scholar 

  89. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol. Rev. 214, 73–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Orange, J. S., Stone, K. D., Turvey, S. E. & Krzewski, K. Biomedicine and disease: the Wiskott–Aldrich syndrome. Cell. Mol. Life Sci. 61, 2361–2385 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Gismondi, A. et al. Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect. Blood 104, 436–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Sullivan, K. E., Mullen, C. A., Blaese, R. M. & Winkelstein, J. A. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J. Pediatr. 125, 876–885 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Snover, D. C., Frizzera, G., Spector, B. D., Perry, G. S. 3rd & Kersey, J. H. Wiskott–Aldrich syndrome: histopathologic findings in the lymph nodes and spleens of 15 patients. Hum. Pathol. 12, 821–831 (1981).

    Article  CAS  PubMed  Google Scholar 

  94. Pasic, S., Micic, D. & Kuzmanovic, M. Epstein–Barr virus-associated haemophagocytic lymphohistiocytosis in Wiskott–Aldrich syndrome. Acta Paediatr. 92, 859–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, I. J. et al. Epstein–Barr virus associated post-transplantation lymphoproliferative disorder with hemophagocytosis in a child with Wiskott–Aldrich syndrome. Pediatr. Blood Cancer 45, 340–343 (2005).

    Article  PubMed  Google Scholar 

  96. Huang, W., Ochs, H. D., Dupont, B. & Vyas, Y. M. The Wiskott–Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-κB (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement. J. Immunol. 174, 2602–2611 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Introne, W., Boissy, R. E. & Gahl, W. A. Clinical, molecular, and cell biological aspects of Chediak–Higashi syndrome. Mol. Genet. Metab. 68, 283–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Roder, J. C. et al. Further studies of natural killer cell function in Chediak–Higashi patients. Immunology 46, 555–560 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Katz, P., Zaytoun, A. M. & Fauci, A. S. Deficiency of active natural killer cells in the Chediak–Higashi syndrome. Localization of the defect using a single cell cytotoxicity assay. J. Clin. Invest. 69, 1231–1238 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Haliotis, T. et al. Chediak–Higashi gene in humans I. Impairment of natural-killer function. J. Exp. Med. 151, 1039–1048 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Targan, S. R. & Oseas, R. The “lazy” NK cells of Chediak–Higashi syndrome. J. Immunol. 130, 2671–2674 (1983).

    CAS  PubMed  Google Scholar 

  102. Klein, M. et al. Chediak–Higashi gene in humans. II. The selectivity of the defect in natural-killer and antibody-dependent cell-mediated cytotoxicity function. J. Exp. Med. 151, 1049–1058 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Abo, T., Roder, J. C., Abo, W., Cooper, M. D. & Balch, C. M. Natural killer (HNK-1+) cells in Chediak–Higashi patients are present in normal numbers but are abnormal in function and morphology. J. Clin. Invest. 70, 193–197 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stinchcombe, J. C., Page, L. J. & Griffiths, G. M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients. Traffic 1, 435–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Huizing, M., Anikster, Y. & Gahl, W. A. Hermansky–Pudlak syndrome and Chediak–Higashi syndrome: disorders of vesicle formation and trafficking. Thromb. Haemost. 86, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Fontana, S. et al. Innate immunity defects in Hermansky–Pudlak type 2 syndrome. Blood 107, 4857–4864 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Enders, A. et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky–Pudlak syndrome type II. Blood 108, 81–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol. 4, 1111–1120 (2003).

    Article  CAS  Google Scholar 

  109. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Klein, C. et al. Partial albinism with immunodeficiency (Griscelli syndrome). J. Pediatr. 125, 886–895 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Plebani, A., Ciravegna, B., Ponte, M., Mingari, M. C. & Moretta, L. Interleukin-2 mediated restoration of natural killer cell function in a patient with Griscelli syndrome. Eur. J. Pediatr. 159, 713–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Barral, D. C. et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247–257 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003). This paper describes the crucial role of MUNC13-4 in priming lytic granules for membrane fusion in CTLs and NK cells and defines the association of naturally occurring human mutations with HLH.

    Article  CAS  PubMed  Google Scholar 

  114. zur Stadt, U. et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet. 14, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. zur Stadt, U. et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum. Mutat. 27, 62–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Blanca, I. R., Bere, E. W., Young, H. A. & Ortaldo, J. R. Human B cell activation by autologous NK cells is regulated by CD40–CD40 ligand interaction: role of memory B cells and CD5+ B cells. J. Immunol. 167, 6132–6139 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Zingoni, A. et al. Cross-talk between activated human NK cells and CD4+ T cells via OX40–OX40 ligand interactions. J. Immunol. 173, 3716–3724 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Borg, C. et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104, 3267–3275 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Carlin, L. M., Eleme, K., McCann, F. E. & Davis, D. M. Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med. 194, 1507–1517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tabiasco, J. et al. Active trans-synaptic capture of membrane fragments by natural killer cells. Eur. J. Immunol. 32, 1502–1508 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Vanherberghen, B. et al. Human and murine inhibitory natural killer cell receptors transfer from natural killer cells to target cells. Proc. Natl Acad. Sci. USA 101, 16873–16878 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roda-Navarro, P., Vales-Gomez, M., Chisholm, S. E. & Reyburn, H. T. Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function. Proc. Natl Acad. Sci. USA 103, 11258–11263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Williams, G. S. et al. Membranous structures transfer cell surface proteins across NK cell immune synapses. Traffic 8, 1190–1204 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Roda-Navarro, P. & Reyburn, H. T. Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J. 21, 1636–1646 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Hanna, J. et al. Novel APC-like properties of human NK cells directly regulate T cell activation. J. Clin. Invest. 114, 1612–1623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bossi, G. & Griffiths, G. M. CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin. Immunol. 17, 87–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Zarcone, D. et al. Ultrastructural analysis of human natural killer cell activation. Blood 69, 1725–1736 (1987).

    CAS  PubMed  Google Scholar 

  131. Faure, M., Barber, D. F., Takahashi, S. M., Jin, T. & Long, E. O. Spontaneous clustering and tyrosine phosphorylation of NK cell inhibitory receptor induced by ligand binding. J. Immunol. 170, 6107–6114 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Fassett, M. S., Davis, D. M., Valter, M. M., Cohen, G. B. & Strominger, J. L. Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not class I MHC clustering. Proc. Natl Acad. Sci. USA 98, 14547–14552 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sanni, T. B., Masilamani, M., Kabat, J., Coligan, J. E. & Borrego, F. Exclusion of lipid rafts and decreased mobility of CD94/NKG2A receptors at the inhibitory NK cell synapse. Mol. Biol. Cell 15, 3210–3223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vyas, Y. M., Maniar, H., Lyddane, C. E., Sadelain, M. & Dupont, B. Ligand binding to inhibitory killer cell Ig-like receptors induce colocalization with Src homology domain 2-containing protein tyrosine phosphatase 1 and interruption of ongoing activation signals. J. Immunol. 173, 1571–1578 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Watzl, C. & Long, E. O. Natural killer cell inhibitory receptors block actin cytoskeleton-dependent recruitment of 2B4 (CD244) to lipid rafts. J. Exp. Med. 197, 77–85 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stebbins, C. C. et al. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell Biol. 23, 6291–6299 (2003). One of several important references (including references 23 and 24) that define the mechanisms by which the NK-cell inhibitory synapse can interfere with steps of NK-cell lytic-synapse formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Butler, B., Kastendieck, D. H. & Cooper, J. A. Differently phosphorylated forms of the cortactin homolog HS1 mediate distinct functions in natural killer cells. Nature Immunol. 9, 887–897 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grant AI-067946) and a faculty development award from the Education Research Trust of the American Academy of Allergy, Asthma and Immunology. I thank J. Burkhardt for her comments on the manuscript, and I apologize to the authors of the many relevant works that could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (Figure) | Interactive version of a prototypical mature NK-cell lytic synapse

The mature natural killer (NK)-cell lytic synapse in FIG. 1 is provided in an interactive format, whereby placing the cursor over the cell and clicking the mouse button allows for the cell to be dragged in different directions for a full 360 degrees of interaction. The image shows a human NK cell (YTS cell line) expressing Cd2–GFP (green fluorescent protein) fusion protein conjugated to a target cell (an Epstein–Barr-virus-transformed B-cell line). NK cells were conjugated to the target cells, fixed, permeabilized and stained with a perforin-specific monoclonal antibody (red) to visualize the lytic granules. The serial images were obtained using confocal microscopy by serial acquisition of optical slices along the z-axis and followed by the three-dimensional reconstruction in silico. QuickTime virtual reality (QTvR) output and Improvision volocity visualization software were used to generate complete rotation of the images around the z-axis. The accumulated GFP fluorescence indicates the supramolecular activation cluster (SMAC) that forms at the synapse between the NK cell and the target cell. Notably, a region in the centre of the SMAC that is devoid of GFP is consistent with the presence of a central SMAC (cSMAC) and delineates a channel through which the secretion of lytic-granule contents is likely to occur. Although there is an accumulation of perforin inside the SMAC (consistent with the lytic granules surrounding the microtubule-organizing centre), perforin can be seen coming from this region to the cSMAC. This is consistent with the secretory domain of the lytic synapse. (MOV 60173 kb)

Related links

Related links

DATABASES

OMIM

Chediak–Higashi syndrome

Griscelli syndrome type 2

Hermansky–Pudlak syndrome type 2

familial haemophagocytic lymphohistiocytosis

leukocyte adhesion deficiency type I

Wiskott–Aldrich syndrome

FURTHER INFORMATION

Jordan Orange's laboratory website

Glossary

'Danger' signals

Agents that alert the immune system to danger and thereby promote the generation of immune responses. Danger signals can be associated with microbial invaders (exogenous danger signals), and can also be produced or expressed by damaged cells (endogenous danger signals).

Microclusters

Discrete collections of molecules at the immunological synapse that can move in the plasma membrane and generate signals. They are smaller than and exclusive of the central supramolecular activation cluster, which can represent a coalescence of multiple microclusters.

Perforin

A component of cytolytic granules that participates in the permeabilization of plasma membranes, thereby allowing granzymes and other cytotoxic components to enter or be taken up by target cells.

Lipid rafts

Liquid-ordered membrane domains that are enriched in sphingolipids and cholesterol, and also contain glycophosphatidylinositol-anchored receptors. They can provide ordered structure to the lipid bilayer and have the ability to include or exclude specific signalling molecules and complexes. Given that most techniques for studying lipid rafts are indirect (such as cell-membrane binding of cholera toxin, cholesterol sequestration using nonspecific reagents and cell fractionation based on detergent sensitivity), their physiological relevance and function remain controversial.

Microtubule-organizing centre

(MTOC). A structure that is found in all plant and animal cells from which microtubules radiate. The two most important types of MTOC are the basal bodies that are associated with cilia, and the centrosome, which is composed of γ-tubulin-ring complexes for microtubule nucleation.

Vesicle priming

The process of preparing, through the acquisition of biochemical attributes, a secretory vesicle (such as a lytic granule) for fusion with the inner leaflet of the membrane.

NKG2D

(Natural-killer group 2, member D). A primary activating receptor that is encoded by the NK-cell gene complex and is expressed by all mature NK cells. It recognizes distinct families of ligands that are generally expressed only by infected, stressed or transformed cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orange, J. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 8, 713–725 (2008). https://doi.org/10.1038/nri2381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing