Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut

Key Points

  • Mucosal surfaces of mammals are exquisitely susceptible to colonization by pathogens and are populated by elaborate mucosal-associated lymphoid tissues that are rich in conventional and specialized cells of the innate and adaptive immune system.

  • All metazoan organisms have evolved a strategic alliance with commensal microorganisms. For example the gastrointestinal tract is heavily populated by commensal communities composed of species from the eukarya, archaea and bacteria. These communities are remarkably diverse and are essential for normal development and metabolism. In addition, recent studies identified alterations in the acquisition or composition of commensals that are associated with susceptibility to multiple metabolic and inflammatory diseases.

  • Simultaneous exposure to potential pathogens versus innocuous food antigens and beneficial commensal microorganisms creates a unique regulatory challenge for the gut-associated lymphoid tissues.

  • Intestinal epithelial cells (IECs) provide a crucial physical barrier to potentially invasive pathogens aided by the expression of intercellular tight junctions, an actin-rich brush border and a secreted glycocalyx. IECs also express germ-line encoded innate immune receptors and in vivo studies suggest that IECs routinely recognize and respond to commensal microorganisms in health and disease.

  • Mammalian IECs and commensal communities exhibit numerous adaptations that facilitate or limit inappropriate immune responses to commensals and thereby maintain symbiosis. These include restricted localization of pattern-recognition receptors on IECs and the capacity of commensals to limit innate immune signalling in host cells.

  • In addition to innate recognition of commensal microorganisms, IECs can directly regulate the functions of antigen-presenting cells, innate immune cells and lymphocytes in the intestinal microenvironment, suggesting that IECs are an essential lineage in the maintenance of intestinal immune homeostasis via translation of commensal-derived signals to the mucosal immune system.

Abstract

Mucosal surfaces such as the intestinal tract are continuously exposed to both potential pathogens and beneficial commensal microorganisms. This creates a requirement for a homeostatic balance between tolerance and immunity that represents a unique regulatory challenge to the mucosal immune system. Recent findings suggest that intestinal epithelial cells, although once considered a simple physical barrier, are a crucial cell lineage for maintaining intestinal immune homeostasis. This Review discusses recent findings that identify a cardinal role for epithelial cells in sampling the intestinal microenvironment, discriminating pathogenic and commensal microorganisms and influencing the function of antigen-presenting cells and lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The intestinal epithelial-cell barrier.
Figure 2: Microbial recognition by intestinal epithelial cells.
Figure 3: Commensal bacteria regulate intestinal epithelial-cell gene expression.
Figure 4: Intestinal epithelial cells regulate immune-cell function.

Similar content being viewed by others

References

  1. Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Gill, S. R., et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  4. Macdonald, T. T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 307, 1920–1955 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  7. Mowat, A. M. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Rev. Immunol. 3, 331–341 (2003).

    Article  CAS  Google Scholar 

  8. Izcue, A., Coombes, J. L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Coombes, J. L. & Maloy, K. J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin. Immunol. 19, 116–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nature Rev. Immunol. 8, 435–436 (2008).

    Article  CAS  Google Scholar 

  11. Shen, L. & Turner, J. R. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G577–G582 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Frey, A., et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184, 1045–1059 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. McAuley, J. L., et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117, 2313–2324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sansonetti, P. J. War and peace at mucosal surfaces. Nature Rev. Immunol. 4, 953–964 (2004).

    Article  CAS  Google Scholar 

  15. Salzman, N. H., Ghosh, D., Huttner, K., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003). This paper demonstrates a critical in vivo role of paneth-cell-derived defensins in intestinal host defence.

    Article  CAS  PubMed  Google Scholar 

  16. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  17. Agerberth, B. & Gudmundsson, G. H. Host antimicrobial defence peptides in human disease. Curr. Top. Microbiol. Immunol. 306, 67–90 (2006).

    CAS  PubMed  Google Scholar 

  18. Uehara, A., Fujimoto, Y., Fukase, K. & Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44, 3100–3111 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Neutra, M. R. M cells in antigen sampling in mucosal tissues. Curr. Top. Microbiol. Immunol. 236, 17–32 (1999).

    CAS  PubMed  Google Scholar 

  20. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Rescigno, M., et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  22. Niess, J. H., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005). Reference 22 shows that a subset of lamina propria DCs express the chemokine receptor CX 3 CR1 allowing formation of transepithelial dendrites that enable the cells to directly sample luminal antigens.

    Article  CAS  PubMed  Google Scholar 

  23. Niess, J. H. & Reinecker, H. C. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract. Curr. Opin. Gastroenterol. 21, 687–691 (2005).

    Article  PubMed  Google Scholar 

  24. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chirdo, F. G., Millington, O. R., Beacock-Sharp, H. & Mowat, A. M. Immunomodulatory dendritic cells in intestinal lamina propria. Eur. J. Immunol. 35, 1831–1840 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Blanas, E., Davey, G. M., Carbone, F. R. & Heath, W. R. A bone marrow-derived APC in the gut-associated lymphoid tissue captures oral antigens and presents them to both CD4+ and CD8+ T cells. J. Immunol. 164, 2890–2896 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. MacPherson, G., et al. Uptake of antigens from the intestine by dendritic cells. Ann. NY Acad. Sci. 1029, 75–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Milling, S. W., Cousins, L. & MacPherson, G. G. How do DCs interact with intestinal antigens? Trends Immunol. 26, 349–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, L. M. & MacPherson, G. G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med. 177, 1299–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Qureshi, S. T. & Medzhitov, R. Toll-like receptors and their role in experimental models of microbial infection. Genes Immun. 4, 87–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Girardin, S. E., et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Philpott, D. J. & Girardin, S. E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41, 1099–1108 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nature Immunol. 7, 1250–1257 (2006).

    Article  CAS  Google Scholar 

  35. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Hooper, L. V., et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eckburg, P. B., et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). Medzhitov and colleagues demonstrate that commensal bacteria are recognized by TLRs under normal steady-state conditions. This interaction has a crucial role in the maintenance of epithelial-cell homeostasis and protection from injury in the intestine.

    Article  CAS  PubMed  Google Scholar 

  42. Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA 99, 15451–15455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article  PubMed  Google Scholar 

  44. Xu, J. & Gordon, J. I. Inaugural Article: Honor thy symbionts. Proc. Natl Acad. Sci. USA 100, 10452–10459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Backhed, F., et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacDonald, T. T. & Gordon, J. N. Bacterial regulation of intestinal immune responses. Gastroenterol. Clin. North Am. 34, 401–412 (2005).

    Article  PubMed  Google Scholar 

  47. Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol. 4, 269–273 (2003).

    Article  CAS  Google Scholar 

  48. Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nature Immunol. 5, 569–573 (2004).

    Article  CAS  Google Scholar 

  49. Gordon, H. A. Morphological and physiological characterization of germfree life. Ann. NY Acad. Sci. 78, 208–220 (1959).

    Article  CAS  PubMed  Google Scholar 

  50. Umesaki, Y., Setoyama, H., Matsumoto, S. & Okada, Y. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32–37 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Helgeland, L., Vaage, J. T., Rolstad, B., Midtvedt, T. & Brandtzaeg, P. Microbial colonization influences composition and T-cell receptor Vβ repertoire of intraepithelial lymphocytes in rat intestine. Immunology 89, 494–501 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith, K., McCoy, K. D. & Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Treiner, E., et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005). This paper shows that during colonization of animals with the commensal B. fragilis , a bacterial polysaccharide is presented by DCs and directs the maturation of the developing immune system.

    Article  CAS  PubMed  Google Scholar 

  55. Ley, R. E., et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005). Gordon and colleagues demonstrate that genetically obese mice exhibit significant alterations in the composition of their commensal flora and suggest that intentional manipulation of community structure may be useful for regulating metabolism in obese individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kalliomaki, M., et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107, 129–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Noverr, M. C. & Huffnagle, G. B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12, 562–568 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Tlaskalova-Hogenova, H., et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 93, 97–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. de la Cochetiere, M. F., et al. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of Clostridium. Pediatr. Res. 56, 366–370 (2004).

    Article  PubMed  Google Scholar 

  61. Ott, S. J., et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Noverr, M. C. & Huffnagle, G. B. The 'microflora hypothesis' of allergic diseases. Clin. Exp. Allergy 35, 1511–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. De Hertogh, G., et al. Validation of 16S rDNA sequencing in microdissected bowel biopsies from Crohn's disease patients to assess bacterial flora diversity. J. Pathol. 209, 532–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Garrett, W. S., et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ryu, J. H., et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Fagarasan, S., et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002). Honjo and collegues show that deficiency in AID results in a significant expansion of anaerobic flora in the small intestine, implicating a role for intestinal B-cell somatic hypermutation in regulating the commensal flora.

    Article  CAS  PubMed  Google Scholar 

  67. Suzuki, K., et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 101, 1981–1986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neal, M. D., et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 176, 3070–3079 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Altier, C. Genetic and environmental control of Salmonella invasion. J. Microbiol. 43, 85–92 (2005).

    CAS  PubMed  Google Scholar 

  70. Guiney, D. G. The role of host cell death in Salmonella infections. Curr. Top. Microbiol. Immunol. 289, 131–150 (2005).

    CAS  PubMed  Google Scholar 

  71. Brown, N. F., et al. Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog. 1, e32 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gal-Mor, O. & Finlay, B. B. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell. Microbiol. 8, 1707–1719 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bhavsar, A. P., Guttman, J. A. & Finlay, B. B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Wald, D., et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nature Immunol. 4, 920–927 (2003).

    Article  CAS  Google Scholar 

  75. Garlanda, C., et al. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc. Natl Acad. Sci. USA 101, 3522–3526 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garlanda, C., et al. Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res. 67, 6017–6021 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Xiao, H., et al. The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 26, 461–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Schilling, J. D., Martin, S. M., Hung., C. S., Lorenz, R. G. & Hultgren, S. J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 100, 4203–4208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G., MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lebeis, S. L., Bommarius, B., Parkos, C. A., Sherman, M. A. & Kalman, D. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 179, 566–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  PubMed  Google Scholar 

  82. Chen, L. W., et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nature Med. 9, 575–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Egan, L. J., et al. IkB-kinaseb-dependent NF-κB activation provides radioprotection to the intestinal epithelium. Proc. Natl Acad. Sci. USA 101, 2452–2457 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Greten, F. R., et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Zaph, C., et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Nenci, A., et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007). References 85 and 86 demonstrate an essential role for intestinal epithelial-cell-intrinsic NF-κB activity in regulating intestinal DC responses and susceptibility to spontaneous or infection-induced intestinal inflammation.

    CAS  PubMed  Google Scholar 

  87. Ogura, Y., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Hugot, J. P., et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Maeda, S., et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Abreu, M. T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Abreu, M. T., et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Melmed, G., et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J. Immunol. 170, 1406–1415 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Lotz, M., et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Neish, A. S., et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000). Madara and colleagues demonstrate that prokaryotic determinants from non-virulent bacteria can inhibit polyubiquitylation and subsequent degradation of IκBα that could contribute to immune hyporesponsiveness in the gut.

    Article  CAS  PubMed  Google Scholar 

  99. Tien, M. T., et al. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol. 176, 1228–1237 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Collier-Hyams, L. S., Sloane, V., Batten, B. C. & Neish, A. S. Cutting edge: bacterial modulation of epithelial signaling via changes in neddylation of cullin-1. J. Immunol. 175, 4194–4198 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kelly, D., et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol. 5, 104–112 (2004).

    Article  CAS  Google Scholar 

  102. Saemann, M. D., et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 14, 2380–2382 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Bashir, M. E., Louie, S., Shi, H. N. & Nagler-Anderson, C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J. Immunol. 172, 6978–6987 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004). Macpherson and Uhr show that intestinal DCs carry live commensal bacteria to the mesenteric lymph nodes where they selectively induce IgA production.

    Article  CAS  PubMed  Google Scholar 

  105. Iwasaki, A. & Kelsall, B. L. Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Kelsall, B. L. & Leon, F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 206, 132–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115, 153–162 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sato, A. & Iwasaki, A. Peyer's patch dendritic cells as regulators of mucosal adaptive immunity. Cell. Mol. Life Sci. 62, 1333–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Colonna, M., Pulendran, B. & Iwasaki, A. Dendritic cells at the host-pathogen interface. Nature Immunol. 7, 117–120 (2006).

    Article  CAS  Google Scholar 

  110. Rimoldi, M., Chieppa, M., Vulcano, M., Allavena, P. & Rescigno, M. Intestinal epithelial cells control dendritic cell function. Ann. NY Acad. Sci. 1029, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Rimoldi, M., et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nature Immunol. 6, 507–514 (2005). Rescigno and colleagues show that human IECs can induce non-inflammatory DCs in vitro that preferentially promoted T H 2-type cytokine production in T cells and that this pathway is dysregulated in patients with Crohn's disease.

    Article  CAS  Google Scholar 

  112. Vallon-Eberhard, A., Landsman, L., Yogev, N., Verrier, B. & Jung, S. Transepithelial pathogen uptake into the small intestinal lamina propria. J. Immunol. 176, 2465–2469 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Watanabe, N., et al. Human thymic stromal lymphopoietin promotes dendritic cell-mediated CD4+ T cell homeostatic expansion. Nature Immunol. 5, 426–434 (2004).

    Article  CAS  Google Scholar 

  114. Allakhverdi, Z., et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204, 253–258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kato, A., Favoreto, S. Jr, Avila, P. C. & Schleimer, R. P. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol. 179, 1080–1087 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Bogiatzi, S. I., et al. Cutting Edge: Proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J. Immunol. 178, 3373–3377 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Li, M., et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl Acad. Sci. USA 103, 11736–11741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, H. C. & Ziegler, S. F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc. Natl Acad. Sci. USA 104, 914–919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bilsborough, J., George, T. C., Norment, A. & Viney, J. L. Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481–492 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Coombes, J. L., et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sun, C. M., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007). Work from the Belkaid and Powrie laboratories (references 120 and 121) shows that a subset of CD103+ intestinal DCs can promote peripheral conversion of regulatory T cells via a TGFβ and retinoic-acid-dependent mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rimoldi, M., et al. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106, 2818–2826 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Soumelis, V., et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  124. Yoo, J., et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, B., et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunol. 6, 1047–1053 (2005).

    Article  CAS  Google Scholar 

  126. Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W. J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 202, 829–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ziegler, S. F. & Liu, Y. J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nature Immunol. 7, 709–714 (2006).

    Article  CAS  Google Scholar 

  128. Liu, Y. J., et al. TSLP: An epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cellmaturation. Annu. Rev. Immunol. 25, 193–219 (2006).

    Article  CAS  Google Scholar 

  129. Dignass, A. U. & Podolsky, D. K. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor β. Gastroenterology 105, 1323–1332 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Brown, S. L., et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Invest. 117, 258–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kalinski, P., Vieira, P. L., Schuitemaker, J. H., de Jong, E. C. & Kapsenberg, M. L. Prostaglandin E2 is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97, 3466–3469 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Smythies, L. E., et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fujita, S., et al. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood 107, 3656–3664 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Newberry, R. D., McDonough, J. S., Stenson, W. F. & Lorenz, R. G. Spontaneous and continuous cyclooxygenase-2-dependent prostaglandin E2 production by stromal cells in the murine small intestine lamina propria: directing the tone of the intestinal immune response. J. Immunol. 166, 4465–4472 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Harris, S. G., Padilla, J., Koumas, L., Ray, D. & Phipps, R. P. Prostaglandins as modulators of immunity. Trends Immunol. 23, 144–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Arvans, D. L., et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am. J. Physiol. Gastrointest Liver Physiol. 288, G696–G704 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Luo, X., et al. Release of heat shock protein 70 and the effects of extracellular heat shock protein 70 on the production of IL-10 in fibroblast-like synoviocytes. Cell Stress Chaperones 8 April 2008 (PMID:18392950).

  138. Osterloh, A., Veit, A., Gessner, A., Fleischer, B. & Breloer, M. Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12. Int. Immunol. 20, 433–443 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Laudanski, K., De, A. & Miller-Graziano, C. Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur. J. Immunol. 37, 2812–2824 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Dai, J., Liu, B., Cua, D. J. & Li, Z. Essential roles of IL-12 and dendritic cells but not IL-23 and macrophages in lupus-like diseases initiated by cell surface HSP gp96. Eur. J. Immunol. 37, 706–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Xu, W., et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nature Immunol. 8, 294–303 (2007).

    Article  CAS  Google Scholar 

  142. He, B., et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Rojas, R. & Apodaca, G. Immunoglobulin transport across polarized epithelial cells. Nature Rev. Mol. Cell Biol. 3, 944–955 (2002).

    Article  CAS  Google Scholar 

  144. Woof, J. M. & Mestecky, J. Mucosal immunoglobulins. Immunol. Rev. 206, 64–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Astrakhan, A., et al. Local increase in thymic stromal lymphopoietin induces systemic alterations in B cell development. Nature Immunol. 8, 522–531 (2007).

    Article  CAS  Google Scholar 

  146. Cerutti, A. The regulation of IgA class switching. Nature Rev. Immunol. 8, 421–434 (2008).

    Article  CAS  Google Scholar 

  147. Hershberg, R. M. & Mayer, L. F. Antigen processing and presentation by intestinal epithelial cells — polarity and complexity. Immunol. Today 21, 123–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Bland, P. W. & Warren, L. G. Antigen presentation by epithelial cells of the rat small intestine. I. Kinetics, antigen specificity and blocking by anti-Ia antisera. Immunology 58, 1–7 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bland, P. W. Antigen presentation by gut epithelial cells: secretion by rat enterocytes of a factor with IL-1-like activity. Adv. Exp. Med. Biol. 216A, 219–225 (1987).

    Article  CAS  PubMed  Google Scholar 

  150. Kaiserlian, D., Vidal, K. & Revillard, J. P. Murine enterocytes can present soluble antigen to specific class II-restricted CD4+ T cells. Eur. J. Immunol. 19, 1513–1516 (1989).

    Article  CAS  PubMed  Google Scholar 

  151. Bland, P. W. & Whiting, C. V. Induction of MHC class II gene products in rat intestinal epithelium during graft-versus-host disease and effects on the immune function of the epithelium. Immunology 75, 366–371 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Telega, G. W., Baumgart, D. C. & Carding, S. R. Uptake and presentation of antigen to T cells by primary colonic epithelial cells in normal and diseased states. Gastroenterology 119, 1548–1559 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Buning, J., et al. Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn's colitis patients. FASEB J. 20, 359–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Sanderson, I. R., Ouellette, A. J., Carter, E. A., Walker, W. A. & Harmatz, P. R. Differential regulation of B7 mRNA in enterocytes and lymphoid cells. Immunology 79, 434–438 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Zoetendal, E. G., Akkermans, A. D. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007). Palmer et al . analyze commensal bacteria in babies over the first year of life and demonstrate that environmental exposures have a major influence on distinctive and dynamic characteristics of the microbial community in individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Harmsen, H. J., et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Favier, C. F., Vaughan, E. E., De Vos, W. M. & Akkermans, A. D. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68, 219–226 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fanaro, S., Chierici, R., Guerrini, P. & Vigi, V. Intestinal microflora in early infancy: composition and development. Acta Paediatr. 91, S48–S55 (2003).

    Google Scholar 

  160. Hallstrom, M., Eerola, E., Vuento, R., Janas, M. & Tammela, O. Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. Eur. J. Clin. Microbiol. Infect. Dis. 23, 463–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Penders, J., et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 243, 141–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Penders, J., et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to all current members of the Artis laboratory for useful discussions and contributions to this manuscript. Work in the laboratory is supported by the US National Institutes of Health (AI61570, AI74878, F31-GM82187, F32-AI72943, T32-AI007532-08, T32-CA09140-30), University of Pennsylvania Center for Infectious Diseases and University Research Fund, The Irvington Institute Fellowship Program of the Cancer Research Institute and The Crohn's and Colitis Foundation of America's William and Shelby Modell Family Foundation Research Award. Apologies to colleagues whose work and publications could not be referenced due to space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Artis's homepage

Glossary

Gut-associated lymphoid tissues

(GALTs). Lymphoid structures and aggregates associated with the intestinal mucosa, specifically the tonsils, Peyer's patches, lymphoid follicles, appendix or coecal patch and mesenteric lymph nodes. They are enriched in conventional and unconventional lymphocytes and specialized dendritic-cell and macrophage subsets.

Immunological hyporesponsiveness

A diminished degree of responsiveness to antigen or other stimulation. It is an active process, not simply a passive lack of response.

Tight junctions

Specialized intercellular junctions that seal the apical epithelium. They are formed by several proteins including occludin and claudin, in which two plasma membranes form a sealing gasket around a cell (also known as zonula occludens). Tight junctions prevent fluid moving through the intercellular gaps and prevent lateral diffusion of membrane proteins between the apical and basolateral membranes.

Brush border

The microvilli-covered surface found on the apical surface of epithelial cells that is coated in a rich glycocalyx of mucus and other glycoproteins. The microvilli contain many of the digestive enzymes and transporter systems that are involved in the metabolism and uptake of dietary materials, and provides a large surface area for absorption. Early anatomists noted that this structure appeared very much like the bristles of a paintbrush, hence the name brush borders.

Goblet cell

A differentiated epithelial cell that secretes mucus.

Lamina propria

Connective tissue that is found directly under the mucosal epithelial-cell surface of the gastrointestinal tract. It is traversed by blood and lymphoid vessels, physically supports epithelial cells through the basal membrane and is enriched in innate and adaptive immune cells.

Peyer's patches

Groups of lymphoid nodules identified by Peyer in 1677 that are present in the small intestine (usually the ileum). They occur massed together on the intestinal wall, opposite the line of attachment of the mesentery. Peyer's patches consist of a subepithelial dome area, B-cell follicles and interfollicular T-cell areas.

Pattern-recognition receptor

(PRR). A receptor that recognizes unique structures that are present at the surface of microorganisms. Signalling through PRRs leads to the production of pro-inflammatory cytokines and chemokines and to the expression of co-stimulatory molecules by antigen-presenting cells. The expression of co-stimulatory molecules, together with the presentation of antigenic peptides, by antigen-presenting cells couples innate immune recognition of pathogens with the activation of adaptive immune responses.

Angiogenesis

The development of new blood vessels from existing blood vessels.

Adipose tissue

A type of connective tissue that is specialized for the storage of neutral lipids.

Activation-induced cytidine deaminase

(AID). An RNA-editing enzyme that is necessary for somatic hypermutation and class-switch recombination.

Polymorphisms

Single-nucleotide differences in the sequence of genes that represent allelic variants. These differences might lead to altered structure and/or altered expression of gene products, ultimately leading to pathology.

Ubiquitylation

The attachment of the small protein ubiquitin to lysine residues that are present in other proteins. This tags these proteins for rapid cellular degradation the proteasome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8, 411–420 (2008). https://doi.org/10.1038/nri2316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing