Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement driven by conformational changes

Key Points

  • The complement system is an important part of the humoral immune defence in mammals that is formed by about 35 soluble and cell-surface proteins. Together these proteins enable the host to recognize and clear pathogens and altered host cells. The complement proteins C3 and protease factor B have a central role in the activation pathways of the complement system.

  • Recent advances in the structural biology of complement protein C3, factor B and their proteolytic fragments revealed unprecedented insights into the underlying molecular mechanisms of activation and regulation of the complement pathways. Marked conformational rearrangements of C3 and factor B are central to their biological functions.

  • The structure of complement protein C3 reveals a large, modular protein consisting of 13 domains with a buried thioester moiety. Proteolytic activation of C3 into C3b induces conformational changes that expose binding sites for a range of ligands, as well as expose and activate the thioester moiety for covalent attachment to target surfaces. The activity of the surface-bound C3b is altered upon further proteolysis, resulting in the unwinding of the connecting CUB domain, in iC3b and finally in C3dg and C3c.

  • The complement activation pathways converge in the proteolytic activation of C3 into C3a and C3b by the C3 convertase. Formation of these protease complexes depends on an assembly process, either starting from C3b and pro-enzyme factor B or from the homologues C4b and pro-enzyme C2. Structures of the pro-enzyme factor B, its fragment Bb and the homologous fragment C2a, indicate that formation of this critical protease complex depends a series of intricate conformational changes that unlocks the pro-enzyme activity.

  • Irreversible dissociation of the active C3 convertase is an inherent mechanism to stop complement activation. Possibly, a conformational change in the protease fragments Bb or C2a after dissociation of the complex prevents re-association of the fragments to C3b and C4b respectively.

  • To protect their cells from the potentially damaging results of complement activation, both host and pathogens have developed several mechanisms to control convertase activity.

Abstract

Complement in mammalian plasma recognizes pathogenic, immunogenic and apoptotic cell surfaces, promotes inflammatory responses and marks particles for cell lysis, phagocytosis and B-cell stimulation. At the heart of the complement system are two large proteins, complement component C3 and protease factor B. These two proteins are pivotal for amplification of the complement response and for labelling of the target particles, steps that are required for effective clearance of the target. Here we review the molecular mechanisms of complement activation, in which proteolysis and complex formation result in large conformational changes that underlie the key offensive step of complement executed by C3 and factor B. Insights into the mechanisms of complement amplification are crucial for understanding host defence and pathogen immune evasion, and for the development of complement-immune therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the complement pathways.
Figure 2: Conformational complexity of complement component C3.
Figure 3: Conformational rearrangements of the proteases factor B and C2.
Figure 4: The catalytic centre of chymotrypsin and complement factors B and Bb.

Similar content being viewed by others

References

  1. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nonaka, M. & Kimura, A. Genomic view of the evolution of the complement system. Immunogenetics 58, 701–713 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirkitadze, M. D. & Barlow, P. N. Structure and flexibility of the multiple domain proteins that regulate complement activation. Immunol. Rev. 180, 146–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Sahu, A. & Lambris, J. D. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology 49, 133–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Muller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 57, 321–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, M. W. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today 17, 532–540 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Walport, M. J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Endo, Y., Takahashi, M. & Fujita, T. Lectin complement system and pattern recognition. Immunobiology 211, 283–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lambris, J. D. The multifunctional role of C3, the third component of complement. Immunol. Today 9, 387–393 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Sahu, A. & Lambris, J. D. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Janssen, B. J. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505–511 (2005). This paper describes for the first time the structure of C3, which shows the arrangement of its 13 domains and the protected surroundings of the intact thioester moiety.

    Article  CAS  PubMed  Google Scholar 

  12. Fredslund, F. et al. The structure of bovine complement component 3 reveals the basis for thioester function. J. Mol. Biol. 361, 115–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Janssen, B. J., Christodoulidou, A., McCarthy, A., Lambris, J. D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444, 213–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Wiesmann, C. et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444, 217–220 (2006). References 13 and 14 reveal the large structural rearrangements that occur on activation of C3 into C3b. In addition, reference 14 reveals the binding of the macrophage receptor CRIg, which also inhibits C3 convertase activity.

    Article  CAS  PubMed  Google Scholar 

  15. Nishida, N., Walz, T. & Springer, T. A. Structural transitions of complement component C3 and its activation products. Proc. Natl Acad. Sci. USA 103, 19737–19742 (2006). By presenting electron-microscopy images, this paper provides a comprehensive view of the conformational states of C3 that underly its various activities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Milder, F. J. et al. Factor B structure provides insights into activation of the central protease of the complement system. Nature Struct. Mol. Biol. 14, 224–228 (2007). This paper describes the full-length structure of the pro-enzyme factor B; the structure indicates that activation of factor B involves intricate conformational changes.

    Article  CAS  Google Scholar 

  17. Ponnuraj, K. et al. Structural analysis of engineered Bb fragment of complement factor B: insights into the activation mechanism of the alternative pathway C3-convertase. Mol. Cell 14, 17–28 (2004). This paper describes the two-domain structure of Bb and indicates that ligand binding to the A-domain is not sufficient to activate the catalytic machinery.

    Article  CAS  PubMed  Google Scholar 

  18. Milder, F. J. et al. Structure of complement component C2a: implications for convertase formation and substrate binding. Structure 14, 1587–1597 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Krishnan, V., Xu, Y., Macon, K., Volanakis, J. E. & Narayana, S. V. The crystal structure of C2a, the catalytic fragment of classical pathway C3 and C5 convertase of human complement. J. Mol. Biol. 367, 224–233 (2007). References 18 and 19 show that the primary ligand-binding domain of C2a is regulated differently from homologous I domains in integrins.

    Article  CAS  PubMed  Google Scholar 

  20. Blandin, S. & Levashina, E. A. Thioester-containing proteins and insect immunity. Mol. Immunol. 40, 903–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Budd, A., Blandin, S., Levashina, E. A. & Gibson, T. J. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? Genome Biol. 5, R38 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alsenz, J., Becherer, J. D., Nilsson, B. & Lambris, J. D. Structural and functional analysis of C3 using monoclonal antibodies. Curr. Top. Microbiol Immunol. 153, 235–248 (1990).

    CAS  PubMed  Google Scholar 

  23. Huber, R., Scholze, H., Paques, E. P. & Deisenhofer, J. Crystal structure analysis and molecular model of human C3a anaphylatoxin. Hoppe Seylers Z. Physiol. Chem. 361, 1389–1399 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Nagar, B., Jones, R. G., Diefenbach, R. J., Isenman, D. E. & Rini, J. M. X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280, 1277–1281 (1998). This paper describes the structure of C3d, which reveals the activated, open state of the thioester moiety.

    Article  CAS  PubMed  Google Scholar 

  25. Abdul Ajees, A. et al. The structure of complement C3b provides insights into complement activation and regulation. Nature 444, 221–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Janssen, B. J., Read, R. J., Brunger, A. T. & Gros, P. Crystallography: crystallographic evidence for deviating C3b structure. Nature 448, E1–E2 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Bruijn, M. H. & Fey, G. H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl Acad. Sci. USA 82, 708–712 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baxter, R. H. et al. Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc. Natl Acad. Sci. USA 104, 11615–11620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L. & Prahl, J. W. Evidence for presence of an internal thiolester bond in third component of human complement. Proc. Natl Acad. Sci. USA 77, 5764–5768 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas, M. L., Janatova, J., Gray, W. R. & Tack, B. F. Third component of human complement: localization of the internal thiolester bond. Proc. Natl Acad. Sci. USA 79, 1054–1058 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Law, S. K. & Dodds, A. W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 6, 263–274 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pangburn, M. K., Schreiber, R. D. & Muller-Eberhard, H. J. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J. Exp. Med. 154, 856–867 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Isenman, D. E., Kells, D. I., Cooper, N. R., Muller-Eberhard, H. J. & Pangburn, M. K. Nucleophilic modification of human complement protein C3: correlation of conformational changes with acquisition of C3b-like functional properties. Biochemistry 20, 4458–4467 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Pangburn, M. K. Spontaneous reformation of the intramolecular thioester in complement protein C3 and low temperature capture of a conformational intermediate capable of reformation. J. Biol. Chem. 267, 8584–8590 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Sim, R. B., Twose, T. M., Paterson, D. S. & Sim, E. The covalent-binding reaction of complement component C3. Biochem. J. 193, 115–127 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taniguchi-Sidle, A. & Isenman, D. E. Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 α′-chain. J. Immunol. 153, 5285–5302 (1994).

    CAS  PubMed  Google Scholar 

  37. Kolln, J., Spillner, E., Andra, J., Klensang, K. & Bredehorst, R. Complement inactivation by recombinant human C3 derivatives. J. Immunol. 173, 5540–5545 (2004).

    Article  PubMed  Google Scholar 

  38. Kolln, J., Bredehorst, R. & Spillner, E. Engineering of human complement component C3 for catalytic inhibition of complement. Immunol. Lett. 98, 49–56 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Daoudaki, M. E., Becherer, J. D. & Lambris, J. D. A 34-amino acid peptide of the third component of complement mediates properdin binding. J. Immunol. 140, 1577–1580 (1988).

    CAS  PubMed  Google Scholar 

  40. Hourcade, D. E. The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J. Biol. Chem. 281, 2128–2132 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Fishelson, Z. Complement C3: a molecular mosaic of binding sites. Mol. Immunol. 28, 545–552 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Becherer, J. D., Alsenz, J., Esparza, I., Hack, C. E. & Lambris, J. D. Segment spanning residues 727–768 of the complement C3 sequence contains a neoantigenic site and accommodates the binding of CR1, factor H, and factor B. Biochemistry 31, 1787–1794 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Lambris, J. D. et al. Dissection of CR1, factor H, membrane cofactor protein, and factor B binding and functional sites in the third complement component. J. Immunol. 156, 4821–4832 (1996).

    CAS  PubMed  Google Scholar 

  44. Oran, A. E. & Isenman, D. E. Identification of residues within the 727–767 segment of human complement component C3 important for its interaction with factor H and with complement receptor 1 (CR1, CD35). J. Biol. Chem. 274, 5120–5130 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Lambris, J. D., Avila, D., Becherer, J. D. & Muller-Eberhard, H. J. A discontinuous factor H binding site in the third component of complement as delineated by synthetic peptides. J. Biol. Chem. 263, 12147–12150 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Pangburn, M. K. & Rawal, N. Structure and function of complement C5 convertase enzymes. Biochem. Soc. Trans. 30, 1006–1010 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Muller-Eberhard, H. J. The membrane attack complex of complement. Annu. Rev. Immunol. 4, 503–528 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Carroll, M. C. The complement system in regulation of adaptive immunity. Nature Immunol. 5, 981–986 (2004).

    Article  CAS  Google Scholar 

  49. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gilbert, H. E., Eaton, J. T., Hannan, J. P., Holers, V. M. & Perkins, S. J. Solution structure of the complex between CR2 SCR 1–2 and C3d of human complement: an X-ray scattering and sedimentation modelling study. J. Mol. Biol. 346, 859–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hannan, J. P. et al. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d. J. Mol. Biol. 346, 845–858 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Fishelson, Z., Pangburn, M. K. & Muller-Eberhard, H. J. Characterization of the initial C3 convertase of the alternative pathway of human complement. J. Immunol. 132, 1430–1434 (1984).

    CAS  PubMed  Google Scholar 

  53. Kerr, M. A. The human complement system: assembly of the classical pathway C3 convertase. Biochem. J. 189, 173–181 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fishelson, Z. & Muller-Eberhard, H. J. Residual hemolytic and proteolytic activity expressed by Bb after decay-dissociation of C3b, Bb. J. Immunol. 132, 1425–1429 (1984).

    CAS  PubMed  Google Scholar 

  55. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1 . Cell 101, 47–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shimaoka, M. et al. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo . Proc. Natl Acad. Sci. USA 98, 6009–6014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, J., King, S. L., Bergelson, J. M. & Liddington, R. C. Crystal structure of the I domain from integrin α2β1 . J. Biol. Chem. 272, 28512–28517 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Horiuchi, T., Macon, K. J., Engler, J. A. & Volanakis, J. E. Site-directed mutagenesis of the region around Cys-241 of complement component C2. Evidence for a C4b binding site. J. Immunol. 147, 584–589 (1991).

    CAS  PubMed  Google Scholar 

  60. Fishelson, Z., Pangburn, M. K. & Muller-Eberhard, H. J. C3 convertase of the alternative complement pathway. Demonstration of an active, stable C3b, Bb (Ni) complex. J. Biol. Chem. 258, 7411–7415 (1983).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, Y. & Volanakis, J. E. Contribution of the complement control protein modules of C2 in C4b binding assessed by analysis of C2/factor B chimeras. J. Immunol. 158, 5958–5965 (1997).

    CAS  PubMed  Google Scholar 

  62. Hourcade, D. E., Wagner, L. M. & Oglesby, T. J. Analysis of the short consensus repeats of human complement factor B by site-directed mutagenesis. J. Biol. Chem. 270, 19716–19722 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Pryzdial, E. L. & Isenman, D. E. Alternative complement pathway activation fragment Ba binds to C3b. Evidence that formation of the factor B–C3b complex involves two discrete points of contact. J. Biol. Chem. 262, 1519–1525 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Pryzdial, E. L. & Isenman, D. E. A reexamination of the role of magnesium in the human alternative pathway of complement. Mol. Immunol. 23, 87–96 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Khan, A. R. & James, M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jing, H. et al. New structural motifs on the chymotrypsin fold and their potential roles in complement factor B. EMBO J. 19, 164–173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Volanakis, J. E. & Narayana, S. V. Complement factor D, a novel serine protease. Protein Sci. 5, 553–564 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jing, H. et al. Structures of native and complexed complement factor D: implications of the atypical His57 conformation and self-inhibitory loop in the regulation of specific serine protease activity. J. Mol. Biol. 282, 1061–1081 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Crump, M. P. et al. Structure of an allosteric inhibitor of LFA-1 bound to the I-domain studied by crystallography, NMR, and calorimetry. Biochemistry 43, 2394–2404 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Kallen, J. et al. Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J. Mol. Biol. 292, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Wattanasin, S. et al. 1,4-Diazepane-2,5-diones as novel inhibitors of LFA-1. Bioorg Med. Chem. Lett. 15, 1217–1220 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Jenkins, H. T. et al. Human C4b-binding protein, structural basis for interaction with streptococcal M protein, a major bacterial virulence factor. J. Biol. Chem. 281, 3690–3697 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Stoiber, H., Kacani, L., Speth, C., Wurzner, R. & Dierich, M. P. The supportive role of complement in HIV pathogenesis. Immunol. Rev. 180, 168–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Brook, E., Herbert, A. P., Jenkins, H. T., Soares, D. C. & Barlow, P. N. Opportunities for new therapies based on the natural regulators of complement activation. Ann. NY Acad. Sci. 1056, 176–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Rooijakkers, S. H. & van Strijp, J. A. Bacterial complement evasion. Mol. Immunol. 44, 23–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Favoreel, H. W., Van de Walle, G. R., Nauwynck, H. J. & Pensaert, M. B. Virus complement evasion strategies. J. Gen. Virol. 84, 1–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Kotwal, G. J. & Moss, B. Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335, 176–178 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. McKenzie, R., Kotwal, G. J., Moss, B., Hammer, C. H. & Frank, M. M. Regulation of complement activity by vaccinia virus complement-control protein. J. Infect. Dis. 166, 1245–1250 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Kraiczy, P., Skerka, C., Kirschfink, M., Zipfel, P. F. & Brade, V. Mechanism of complement resistance of pathogenic Borrelia burgdorferi isolates. Int. Immunopharmacol. 1, 393–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Hammel, M. et al. A structural basis for complement inhibition by Staphylococcus aureus . Nature Immunol. 8, 430–437 (2007).

    Article  CAS  Google Scholar 

  81. Rooijakkers, S. H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature Immunol. 6, 920–927 (2005).

    Article  CAS  Google Scholar 

  82. Sim, R. B. & Tsiftsoglou, S. A. Proteases of the complement system. Biochem. Soc. Trans. 32, 21–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kuhlman, M., Joiner, K. & Ezekowitz, R. A. The human mannose-binding protein functions as an opsonin. J. Exp. Med. 169, 1733–1745 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Matsushita, M. & Fujita, T. Cleavage of the third component of complement (C3) by mannose-binding protein-associated serine protease (MASP) with subsequent complement activation. Immunobiology 194, 443–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Thiel, S. et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386, 506–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Pangburn, M. K. & Muller-Eberhard, H. J. Relation of putative thioester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement. J. Exp. Med. 152, 1102–1114 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. D. Lambris and J. van Strijp for reading the manuscript. This work was financially supported by a 'Pioneer' programme grant to P.G. by the Council of Chemical Sciences of the Netherlands Organization for Scientific Research (NWO-CW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Gros.

Related links

Related links

FURTHER INFORMATION

Piet Gros's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gros, P., Milder, F. & Janssen, B. Complement driven by conformational changes. Nat Rev Immunol 8, 48–58 (2008). https://doi.org/10.1038/nri2231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing