Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens

Key Points

  • Natural killer (NK)-cell activation by most pathogens is strictly dependent on the presence of accessory cells, such as monocytes, macrophages or dendritic cells.

  • Direct contact with accessory cells is required for optimal NK-cell responses to most pathogens, and the molecular interactions that underlie this are beginning to be unravelled.

  • Multiple accessory-cell-derived cytokines — both pro-inflammatory and anti-inflammatory — influence NK-cell responses to pathogens.

  • The precise identity of the accessory cell that mediates NK-cell activation varies from one class of pathogen to another, depending on which accessory cell expresses the appropriate pathogen-recognition receptors for the different classes of pathogen-derived ligands.

  • NK cells can pass reciprocal activating signals to accessory cells; however, the physiological relevance of such bidirectional interactions might depend on the nature, and site, of the infection.

Abstract

Natural killer (NK) cells have a crucial role in combating infections and cancers and their surface receptors can directly recognize and respond to damaged, transformed or non-self cells. Whereas some virus-infected cells are recognized by this same route, NK-cell responses to many pathogens are triggered by a different mechanism. Activation of NK cells by these pathogens requires the presence of accessory cells such as monocytes, macrophages and dendritic cells. Recent studies have identified numerous pathogen-recognition receptors that enable accessory cells to recognize different pathogens and subsequently transmit signals — both soluble and contact-dependent — to NK cells, which respond by upregulating their cytotoxic potential and the production of inflammatory cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of NK cells, accessory cells and pathogens.
Figure 2: Signals passed from accessory cells to NK cells.
Figure 3: Accessory-cell-dependent NK-cell activation by diverse pathogens.

Similar content being viewed by others

References

  1. Herberman, R. B. et al. Natural killer cells: characteristics and regulation of activity. Immunol. Rev. 44, 43–70 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Ljunggren, H. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Smyth, M. J. et al. Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lodoen, M. B. & Lanier, L. L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Piguet, V. Receptor modulation in viral replication: HIV, HSV, HHV-8 and HPV: same goal, different techniques to interfere with MHC-I antigen presentation. Curr. Top. Microbiol. Immunol. 285, 199–217 (2005).

    CAS  PubMed  Google Scholar 

  9. Haller, D., Serrant, P., Granato, D., Schiffrin, E. J. & Blum, S. Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes. Clin. Diagn. Lab. Immunol. 9, 649–657 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wherry, J. C., Schreiber, R. D. & Unanue, E. R. Regulation of γ interferon production by natural killer cells in scid mice: roles of tumor necrosis factor and bacterial stimuli. Infect. Immun. 59, 1709–1715 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Newman, K. C., Korbel, D. S., Hafalla, J. C. & Riley, E. M. Cross-talk with myeloid accessory cells regulates human natural killer cell interferon-γ responses to malaria. PLoS Pathog. 2, e118 (2006). The authors demonstrate that the magnitude of the NK-cell response to P. falciparum is regulated by contact-dependent and soluble signals from monocytes and myeloid DCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olsen, I. et al. Bovine NK cells can produce γ interferon in response to the secreted mycobacterial proteins ESAT-6 and MPP14 but not in response to MPB70. Infect. Immun. 73, 5628–5635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orange, J. S. & Biron, C. A. An absolute and restricted requirement for IL-12 in natural killer cell IFN-γ production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J. Immunol. 156, 1138–1142 (1996).

    CAS  PubMed  Google Scholar 

  14. Monteiro, J. M., Harvey, C. & Trinchieri, G. Role of interleukin-12 in primary influenza virus infection. J. Virol. 72, 4825–4831 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Scharton-Kersten, T., Afonso, L. C., Wysocka, M., Trinchieri, G. & Scott, P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol. 154, 5320–5330 (1995).

    CAS  PubMed  Google Scholar 

  16. Heinzel, F. P., Rerko, R. M., Ling, P., Hakimi, J. & Schoenhaut, D. S. Interleukin 12 is produced in vivo during endotoxemia and stimulates synthesis of γ interferon. Infect. Immun. 62, 4244–4249 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nomura, T. et al. Essential role of interleukin-12 (IL-12) and IL-18 for γ interferon production induced by listeriolysin O in mouse spleen cells. Infect. Immun. 70, 1049–1055 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen, K. B. et al. Coordinated and distinct roles for IFN-αβ, IL-12, and IL-15 regulation of NK cell responses to viral infection. J. Immunol. 169, 4279–4287 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Orange, J. S. & Biron, C. A. Characterization of early IL-12, IFN-αβ, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996).

    CAS  PubMed  Google Scholar 

  20. Barao, I., Hudig, D. & Ascensao, J. L. IL-15-mediated induction of LFA-1 is a late step required for cytotoxic differentiation of human NK cells from CD34+Lin bone marrow cells. J. Immunol. 171, 683–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hunter, C. A., Gabriel, K. E., Radzanowski, T., Neyer, L. E. & Remington, J. S. Type I interferons enhance production of IFN-γ by NK cells. Immunol. Lett. 59, 1–5 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Malmgaard, L. & Paludan, S. R. Interferon (IFN)-α/β, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-γ during infection with herpes simplex virus type 2. J. Gen. Virol. 84, 2497–2500 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Gorak, P. M., Engwerda, C. R. & Kaye, P. M. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28, 687–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon α/β. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanabuchi, S. et al. Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 107, 3617–3623 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Atochina, O. & Harn, D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40–CD40L interaction. Clin. Diagn. Lab. Immunol. 12, 1041–1049 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamath, A. T., Sheasby, C. E. & Tough, D. F. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-αβ and IFN-γ. J. Immunol. 174, 767–776 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Siren, J. et al. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J. Gen. Virol. 85, 2357–2364 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Jinushi, M. et al. Critical role of MHC class I-related chain A and B expression on IFN-α-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J. Immunol. 170, 1249–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Cardillo, F., Voltarelli, J. C., Reed, S. G. & Silva, J. S. Regulation of Trypanosoma cruzi infection in mice by γ interferon and interleukin 10: role of NK cells. Infect. Immun. 64, 128–134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tripp, C. S., Wolf, S. F. & Unanue, E. R. Interleukin12 and tumor necrosis factor α are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin10 is a physiologic antagonist. Proc. Natl Acad. Sci. USA 90, 3725–3729 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scott, M. J. et al. CD40–CD154 interactions between macrophages and natural killer cells during sepsis are critical for macrophage activation and are not interferon γ dependent. Clin. Exp. Immunol. 137, 469–477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gazzinelli, R. T., Hieny, S., Wynn, T. A., Wolf, S. & Sher, A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl Acad. Sci. USA 90, 6115–6119 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He, X. S. et al. T cell-dependent production of IFN-γ by NK cells in response to influenza A virus. J. Clin. Invest. 114, 1812–1819 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Artavanis-Tsakonas, K. et al. Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J. Immunol. 171, 5396–5405 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gerosa, F. et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Liang, S., Wei, H., Sun, R. & Tian, Z. IFNα regulates NK cell cytotoxicity through STAT1 pathway. Cytokine 23, 190–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Marshall, J. D., Heeke, D. S., Abbate, C., Yee, P. & Van Nest, G. Induction of interferon- γ from natural killer cells by immunostimulatory CpG DNA is mediated through plasmacytoid-dendritic-cell-produced interferon-α and tumour necrosis factor-α. Immunology 117, 38–46 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Freudenberg, M. A. et al. Cutting edge: a murine, IL-12-independent pathway of IFN- γ induction by Gram-negative bacteria based on STAT4 activation by Type I IFN and IL-18 signaling. J. Immunol. 169, 1665–1668 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, J., Zhang, J., Lichtenheld, M. G. & Meadows, G. G. A role for NF-κB activation in perforin expression of NK cells upon IL-2 receptor signaling. J. Immunol. 169, 1319–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Schluns, K. S., Stoklasek, T. & Lefrancois, L. The roles of interleukin-15 receptor α: trans-presentation, receptor component, or both? Int. J. Biochem. Cell Biol. 37, 1567–1571 (2005). This Review article provides a succinct description of the unusual mechanism of IL-15 trans -presentation, in which IL-15 is secreted and then re-bound to the source cell before being presented to the target cell.

    Article  CAS  PubMed  Google Scholar 

  43. Borg, C. et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104, 3267–3275 (2004). The authors show that IL-12, one of the most potent NK-cell activating cytokines, is focally secreted by the accessory cell at the immune synapse and that optimal IL-12 signalling therefore requires direct contact between the accessory cell and the NK cell.

    Article  CAS  PubMed  Google Scholar 

  44. Hunter, C. A. et al. The role of the CD28/B7 interaction in the regulation of NK cell responses during infection with Toxoplasma gondii. J. Immunol. 158, 2285–2293 (1997).

    CAS  PubMed  Google Scholar 

  45. Warschkau, H. & Kiderlen, A. F. A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J. Immunol. 163, 3409–3416 (1999).

    CAS  PubMed  Google Scholar 

  46. Capasso, M. et al. Costimulation via CD55 on human CD4+ T cells mediated by CD97. J. Immunol. 177, 1070–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hamerman, J. A., Ogasawara, K. & Lanier, L. L. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J. Immunol. 172, 2001–2005 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Andoniou, C. E. et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nature Immunol. 6, 1011–1019 (2005). This study shows that myeloid DCs have a crucial role in NK-cell responses to MCMV infection; this is in addition to the previously documented role for pDCs.

    Article  CAS  Google Scholar 

  49. Jinushi, M. et al. Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J. Immunol. 171, 5423–5429 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Vankayalapati, R. et al. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol. 175, 4611–4617 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Nedvetzki, S. et al. Reciprocal regulation of natural killer cells and macrophages associated with distinct immune synapses. Blood 11 January 2007 (doi:10.1182/blood-2006-10-052977).

  52. Welte, S., Kuttruff, S., Waldhauer, I. & Steinle, A. Mutual activation of natural killer cells and monocytes mediated by NKp80–AICL interaction. Nature Immunol. 7, 1334–1342 (2006). The authors report an addition to the growing list of molecular interactions that can contribute to accessory-cell activation of NK cells and identify AICL as a ligand for the NK-cell receptor NKp80.

    Article  CAS  Google Scholar 

  53. Badgwell, B., Parihar, R., Magro, C., Dierksheide, J., Russo, T. & Carson, W. E. 3rd. Natural killer cells contribute to the lethality of a murine model of Escherichia coli infection. Surgery 132, 205–212 (2002).

    Article  PubMed  Google Scholar 

  54. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Neyer, L. E. et al. Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infect. Immun. 65, 1675–1682 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hunter, C. A., Bermudez, L., Beernink, H., Waegell, W. & Remington, J. S. Transforming growth factor-β inhibits interleukin-12-induced production of interferon-γ by natural killer cells: a role for transforming growth factor-β in the regulation of T cell-independent resistance to Toxoplasma gondii. Eur. J. Immunol. 25, 994–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Schierloh, P. et al. NK cell activity in tuberculosis is associated with impaired CD11a and ICAM-1 expression: a regulatory role of monocytes in NK activation. Immunology 116, 541–552 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nature Immunol. 6, 600–607 (2005).

    Article  CAS  Google Scholar 

  59. Nylen, S., Maasho, K., McMahon-Pratt, D. & Akuffo, H. Leishmanial amastigote antigen P-2 induces major histocompatibility complex class II-dependent natural killer-cell reactivity in cells from healthy donors. Scand. J. Immunol. 59, 294–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Andrews, D. M. et al. Cross-talk between dendritic cells and natural killer cells in viral infection. Mol. Immunol. 42, 547–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Delale, T. et al. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-α release and initiation of immune responses in vivo. J. Immunol. 175, 6723–6732 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    CAS  PubMed  Google Scholar 

  64. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103, 1433–1437 (2004).

    CAS  PubMed  Google Scholar 

  65. Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 101, 11416–11421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Malmgaard, L., Melchjorsen, J., Bowie, A. G., Mogensen, S. C. & Paludan, S. R. Viral activation of macrophages through TLR-dependent and-independent pathways. J. Immunol. 173, 6890–6898 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Pollara, G. et al. Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J. Immunol. 173, 4108–4119 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005). This study reveals that the mechanism by which an accessory cell detects infection by RNA viruses depends both on the cell type and the specific virus.

    Article  CAS  PubMed  Google Scholar 

  69. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bowie, A. G. & Haga, I. R. The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 42, 859–867 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Nishibori, T., Xiong, H., Kawamura, I., Arakawa, M. & Mitsuyama, M. Induction of cytokine gene expression by listeriolysin O and roles of macrophages and NK cells. Infect. Immun. 64, 3188–3195 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Datta, S. K. et al. Vaccination with irradiated Listeria induces protective T cell immunity. Immunity 25, 143–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ito, Y. et al. Seeligeriolysin O, a protein toxin of Listeria seeligeri, stimulates macrophage cytokine production via Toll-like receptors in a profile different from that induced by other bacterial ligands. Int. Immunol. 17, 1597–1606 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Yun, C. H. et al. Natural killer cells and Helicobacter pylori infection: bacterial antigens and interleukin-12 act synergistically to induce γ interferon production. Infect. Immun. 73, 1482–1490 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Ferwerda, G. et al. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. 1, 279–285 (2005). In this study the authors show that intracellular NLRs and cell-surface TLRs can have a synergistic role in the induction of inflammatory cytokines by M. tuberculosis.

    Article  CAS  PubMed  Google Scholar 

  80. Denis, M., Keen, D. L., Parlane, N. A., Storset, A. K. & Buddle, B. M. Bovine natural killer cells restrict the replication of Mycobacterium bovis in bovine macrophages and enhance IL-12 release by infected macrophages. Tuberculosis 87, 53–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Brill, K. J. et al. Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect. Immun. 69, 1755–1765 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Junqueira-Kipnis, A. P. et al. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J. Immunol. 171, 6039–6045 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Feng, C. G. et al. NK cell-derived IFN-γ differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J. Immunol. 177, 7086–7093 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Korbel, D., Finney, O. & Riley, E. Natural killer cells and innate immunity to protozoan pathogens. Int. J. Parasitol. 34, 1517–1528 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Stevenson, M. M., Tam, M. F., Wolf, S. F. & Sher, A. IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-γ and TNF-α and occurs via a nitric oxide-dependent mechanism. J. Immunol. 155, 2545–2556 (1995).

    CAS  PubMed  Google Scholar 

  86. Mohan, K., Moulin, P. & Stevenson, M. Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J. Immunol. 159, 4990–4998 (1997).

    CAS  PubMed  Google Scholar 

  87. Baratin, M. et al. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc. Natl Acad. Sci. USA 102, 14747–14752 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Krishnegowda, G. et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280, 8606–8616 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. & Gately, M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177, 1505–1509 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Wei, X. Q. et al. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163, 2821–2828 (1999).

    CAS  PubMed  Google Scholar 

  91. Berberich, C. et al. Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. J. Immunol. 170, 3171–3179 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006). This fascinating study offers a glimpse of how NK cells and accessory cells interact in lymph nodes in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Becker, I. et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol. Biochem. Parasitol. 130, 65–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Flandin, J. F., Chano, F. & Descoteaux, A. RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-γ-primed macrophages. Eur. J. Immunol. 36, 411–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Nylen, S., Maasho, K., Soderstrom, K., Ilg, T. & Akuffo, H. Live Leishmania promastigotes can directly activate primary human natural killer cells to produce interferon-γ. Clin. Exp. Immunol. 131, 457–467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bafica, A. et al. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J. Immunol. 177, 3515–3519 (2006). This study demonstrates that TLR9 can have a crucial role in the recognition of the DNA of a non-viral pathogen.

    Article  CAS  PubMed  Google Scholar 

  97. Ouaissi, A. et al. The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection. J. Immunol. 168, 6366–6374 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. De Arruda Hinds, L. B. et al. Modulation of B-lymphocyte and NK cell activities by glycoinositolphospholipid purified from Trypanosoma cruzi. Infect. Immun. 67, 6177–6180 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005). This study identifies a specific pathogen-derived ligand for the most recently described TLR, TLR11.

    Article  CAS  PubMed  Google Scholar 

  100. Aliberti, J. et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nature Immunol. 4, 485–490 (2003).

    Article  CAS  Google Scholar 

  101. Loh, J., Chu, D. T., O'Guin, A. K., Yokoyama, W. M. & Virgin, H. W. 4th. Natural killer cells utilize both perforin and γ interferon to regulate murine cytomegalovirus infection in the spleen and liver. J. Virol. 79, 661–667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Biron, C. A., Nguyen, K. B. & Pien, G. C. Innate immune responses to LCMV infections: natural killer cells and cytokines. Curr. Top. Microbiol. Immunol. 263, 7–27 (2002).

    CAS  PubMed  Google Scholar 

  103. Brodskyn, C. I., Barral, A., Boaventura, V., Carvalho, E. & Barral-Netto, M. Parasite-driven in vitro human lymphocyte cytotoxicity against autologous infected macrophages from mucosal leishmaniasis. J. Immunol. 159, 4467–4473 (1997).

    CAS  PubMed  Google Scholar 

  104. Hatcher, F. M., Kuhn, R. E., Cerrone, M. C. & Burton, R. C. Increased natural killer cell activity in experimental American trypanosomiasis. J. Immunol. 127, 1126–1130 (1981).

    CAS  PubMed  Google Scholar 

  105. Hughes, H. P., Kasper, L. H., Little, J. & Dubey, J. P. Absence of a role for natural killer cells in the control of acute infection by Toxoplasma gondii oocysts. Clin. Exp. Immunol. 72, 394–399 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ojo-Amaize, E. et al. Positive correlation between degree of parasitemia, interferon titers, and natural killer cell activity in Plasmodium falciparum-infected children. J. Immunol. 127, 2296–2300 (1981).

    CAS  PubMed  Google Scholar 

  107. Watford, W. T. et al. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol. Rev. 202, 139–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. O'Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121–S131 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Korbel, D. S., Newman, K. C., Almeida, C. R., Davis, D. M. & Riley, E. M. Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. J. Immunol. 175, 7466–7473 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Vitale, M. et al. NK-dependent DC maturation is mediated by TNFα and IFNγ released upon engagement of the NKp30 triggering receptor. Blood 106, 566–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002). References 111 and 112 are two seminal studies that provide new insights into the bidirectional interactions that can occur between NK cells and DCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moretta, A. The dialogue between human natural killer cells and dendritic cells. Curr. Opin. Immunol. 17, 306–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Degli-Esposti, M. A. & Smyth, M. J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nature Rev. Immunol. 5, 112–124 (2005).

    Article  CAS  Google Scholar 

  116. Zitvogel, L., Terme, M., Borg, C. & Trinchieri, G. Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr. Top. Microbiol. Immunol. 298, 157–174 (2006).

    CAS  PubMed  Google Scholar 

  117. Hunter, C. A., Chizzonite, R. & Remington, J. S. IL-1β is required for IL-12 to induce production of IFN-γ by NK cells. A role for IL-1β in the T cell-independent mechanism of resistance against intracellular pathogens. J. Immunol. 155, 4347–4354 (1995).

    CAS  PubMed  Google Scholar 

  118. D'Orazio, J. A., Burke, G. W. & Stein-Streilein, J. Staphylococcal enterotoxin B activates purified NK cells to secrete IFN-γ but requires T lymphocytes to augment NK cytotoxicity. J. Immunol. 154, 1014–1023 (1995).

    CAS  PubMed  Google Scholar 

  119. Takeda, K. et al. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin. Exp. Immunol. 146, 109–115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kawakami, K. et al. Interferon-γ production and host protective response against Mycobacterium tuberculosis in mice lacking both IL-12p40 and IL-18. Microbes Infect. 6, 339–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Batoni, G. et al. Human CD56bright and CD56dim natural killer cell subsets respond differentially to direct stimulation with Mycobacterium bovis bacillus Calmette-Guerin. Scand. J. Immunol. 62, 498–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Hunter, C. A., Slifer, T. & Araujo, F. Interleukin-12-mediated resistance to Trypanosoma cruzi is dependent on tumor necrosis factor α and γ interferon. Infect. Immun. 64, 2381–2386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol. 1, 83–87 (2000).

    Article  CAS  Google Scholar 

  124. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Gazzinelli, R. T. et al. Role of IL-12 in the initiation of cell mediated immunity by Toxoplasma gondii and its regulation by IL-10 and nitric oxide. J. Eukaryot. Microbiol. 41, 9S (1994).

    CAS  PubMed  Google Scholar 

  126. Akuffo, H. et al. Natural killer cells in cross-regulation of IL-12 by IL-10 in Leishmania antigen-stimulated blood donor cells. Clin. Exp. Immunol. 117, 529–534 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hsieh, G. C. et al. A secreted protein from the human hookworm necator americanus binds selectively to NK cells and induces IFN-γ production. J. Immunol. 173, 2699–2704 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Carayannopoulos, L. N. & Yokoyama, W. M. Recognition of infected cells by natural killer cells. Curr. Opin. Immunol. 16, 26–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Perry, A. K., Chen, G., Zheng, D., Tang, H. & Cheng, G. The host type I interferon response to viral and bacterial infections. Cell Res. 15, 407–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Tam, M. A. & Wick, M. J. Differential expansion, activation and effector functions of conventional and plasmacytoid dendritic cells in mouse tissues transiently infected with Listeria monocytogenes. Cell. Microbiol. 8, 1172–1187 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on NK cells in the authors' laboratory is financed by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor M. Riley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Eleanor Riley's homepage

Glossary

γδ T cells

T cells express either a T-cell receptor (TCR) composed of α- and β-subunits (αβ-TCR) or a TCR composed of γ- and δ-subunits (γδ-TCR). Most human T cells (more than 90%) express αβ-TCRs that mainly recognize antigenic peptides bound to conventional MHC class I or II molecules. T cells that express γδ-TCRs are less abundant, and the ligands for these receptors are less well characterized.

Natural killer T cells

(NKT cells). A subset of T cells expressing both NK and T-cell markers. In mice, NKT cells were first identified by their expression of the NK1.1 (natural-killer-cell-associated antigen 1.1) alloantigen in addition to CD3. Some mouse NKT cells express an invariant T-cell receptor (TCR) using the Vα14 variable region of the TCR α-chain and recognize CD1 d-associated antigen. Similarly, human NKT cells express an invariant Vα24 receptor. NKT cells are characterized functionally by cytolytic activity and rapid production of cytokines, including IFNγ and IL-4.

Accessory cell

A cell that provides contact-mediated or cytokine-mediated signals to other cells of the immmune system, thereby facilitating and regulating their response. These cells are typically professional antigen- presenting cells (APCs), such as dendritic cells (DCs), monocytes or macrophages, however, alternative cell types (including non-immune cells) can also function as accessory cells.

CpG motif

A deoxycytosine–deoxyguanosine sequence. Such sequences are prevalent in bacterial DNA but are rare in mammalian DNA. Unmethylated CpG is endocytosed by cells of the innate immune system and interacts with Toll-like receptor 9, activating a signalling cascade that results in the production of pro-inflammatory cytokines.

Pathogen-associated molecular patterns

(PAMPs). Molecular patterns that are found in pathogens but not in mammalian cells. Examples include terminally mannosylated and polymannosylated compounds (which bind the mannose receptor) and various microbial components, such as bacterial lipopolysaccharide, hypomethylated DNA, flagellin and double-stranded RNA.

Pattern-recognition receptor

(PRR). A host receptor (such as Toll-like receptors or NOD-like receptors) that can sense pathogen-associated molecular patterns and initiate signalling cascades that lead to an innate immune response. These can be membrane bound (e.g. TLRs) or soluble cytoplasmic receptors (e.g. RIG-I, MDA5, NLRs).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, K., Riley, E. Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 7, 279–291 (2007). https://doi.org/10.1038/nri2057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing