Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic imaging of the immune system: progress, pitfalls and promise

Key Points

  • This Review provides an overview of the technical and experimental differences between single- and two-photon imaging. The different depths of imaging in complex tissues that can be achieved using the two methods and the benefits of the longer wavelength laser illumination used in two-photon imaging in avoiding phototoxicity are emphasized.

  • A detailed description of methods for achieving fluorescent labelling of cells for imaging, and a comparison of organic dyes, intrinsic fluorescent protein expression and quantum dots is provided.

  • The advantages and disadvantages of using tissue explants and intravital methods are discussed, with an emphasis on how oxygenation and perfusion affect cell mobility in explants.

  • Methods for maintaining the physiological state of imaged tissues and measuring how well such a state has been preserved are discussed.

  • The article describes how imaging data are collected and analysed, along with the pitfalls to be aware of in collecting, processing, and evaluating such data.

  • Discussion of some of the crucial aspects of microscope design that affect the collection of useful imaging data involving rapidly moving cells is included in the manuscript.

  • This Review provides a guide to existing studies using dynamic-imaging methods in immunological research and a summary of ongoing efforts to extend the technology to currently inaccessible tissues, to the molecular level and to the functional behaviour of cells.

Abstract

Both innate and adaptive immunity are dependent on the migratory capacity of myeloid and lymphoid cells. Effector cells of the innate immune system rapidly enter infected tissues, whereas sentinel dendritic cells in these sites mobilize and transit to lymph nodes. In these and other secondary lymphoid tissues, interactions among various cell types promote adaptive humoral and cell-mediated immune responses. Recent advances in light microscopy have allowed direct visualization of these events in living animals and tissue explants, which allows a new appreciation of the dynamics of immune-cell behaviour. In this article, we review the basic techniques and the tools used for in situ imaging, as well as the limitations and potential artefacts of these methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of four fluorescent signals with three photomultiplier tubes.

Similar content being viewed by others

References

  1. Anderson, A. O., Anderson, N. D. & White, J. D. in Animal Models of Immunological Processes (ed. Hay, J. B.) 26–95 (Academic Press, London, 1982).

    Google Scholar 

  2. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Mempel, T. R., Scimone, M. L., Mora, J. R. & von Andrian, U. H. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol. 16, 406–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  5. Janeway, C. J. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1, 1–13 (1989).

    Article  Google Scholar 

  6. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Degli-Esposti, M. A. & Smyth, M. J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nature Rev. Immunol. 5, 112–124 (2005).

    Article  CAS  Google Scholar 

  8. Reis e Sousa, C. Dendritic cells as sensors of infection. Immunity 14, 495–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Sher, A., Pearce, E. & Kaye, P. Shaping the immune response to parasites: role of dendritic cells. Curr. Opin. Immunol. 15, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Pulendran, B. Variegation of the immune response with dendritic cells and pathogen recognition receptors. J. Immunol. 174, 2457–2465 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Halin, C., Rodrigo Mora, J., Sumen, C. & von Andrian, U. H. In vivo imaging of lymphocyte trafficking. Annu. Rev. Cell Dev. Biol. 21, 581–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Winter, G. & Milstein, C. Man-made antibodies. Nature 349, 293–299 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Kohler, G. Derivation and diversification of monoclonal antibodies. Science 233, 1281–1286 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Herzenberg, L. A. & De Rosa, S. C. Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immunol. Today 21, 383–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sheppard, C. J. & Wilson, T. The theory of the direct-view confocal microscope. J. Microsc. 124, 107–117 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. White, J. G., Amos, W. B. & Fordham, M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Kupfer, A. & Kupfer, H. Imaging immune cell interactions and functions: SMACs and the immunological synapse. Semin. Immunol. 15, 295–300 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Wulfing, C., Sjaastad, M. D. & Davis, M. M. Visualizing the dynamics of T cell activation: Intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl Acad. Sci. USA 95, 6302–6307 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grakoui, A., et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. von Andrian, U. H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3, 287–300 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002). One of a trio of early papers (see also refs 25, 46) reporting the dynamic imaging of immune cells in lymphoid tissues. This was the first paper to focus on the duration of antigen-induced T-cell–DC interactions, documenting a long monogamous phase of interaction followed by dissociation and rapid migration of the activated T cells.

    Article  PubMed  Google Scholar 

  25. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002). The first report applying two-photon technology to lymphocyte imaging in intact tissues, documenting and carefully quantitating the unexpectedly rapid movement of T and B cells in the normal lymph node.

    Article  CAS  PubMed  Google Scholar 

  26. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003). The first report extending in situ imaging to CD8+ T cells in lymph nodes, confirming the prolonged antigen-dependent association of T cells with DCs and providing the first quantitative description of the rate of lymphocyte scanning by DCs.

    Article  CAS  Google Scholar 

  27. Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 2604–2609 (2003). The initial report of intravital two-photon imaging of T-cell behaviour in lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004). This paper introduced the use of CD62L blockade as a tool for synchronizing the residence time of T cells in an imaged lymph node, and used this method in a new intravital preparation, showing a third early phase of transient T-cell–DC interaction that preceded the previously reported stable association phase.

    Article  CAS  PubMed  Google Scholar 

  30. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004). A careful analysis of T-cell migration, leading to the hypothesis that immune activation arises from random walk migration of T cells promoting contact with rapidly gesticulating DC processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lindquist, R. L., et al. Visualizing dendritic cell networks in vivo. Nature Immunol. 5, 1243–1250 (2004). The first intravital imaging study of DCs using endogenous fluorescent protein labelling rather than adoptive transfer of the cells, showing an extensive, relatively sessile network of resident DCs that was joined by DCs arriving from peripheral sites.

    Article  CAS  Google Scholar 

  32. Hugues, S., et al. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nature Immunol. 5, 1235–1242 (2004).

    Article  CAS  Google Scholar 

  33. Gunzer, M., et al. A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood 104, 2801–2809 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Shakhar, G., et al. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nature Immunol. 6, 707–714 (2005).

    Article  CAS  Google Scholar 

  35. Okada, T., et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005). The first paper using in situ imaging to document chemokine-directed, rather than random, migration of lymphocytes in situ.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wei, S. H., et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nature Immunol. 6, 1228–1235 (2005).

    Article  CAS  Google Scholar 

  37. Tang, Q., et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol. 7, 83–92 (2006). The first report to visualize the effect of regulatory T cells on the dynamics of effector T-cell migration and interaction with DCs in the lymph-node environment.

    Article  CAS  Google Scholar 

  38. Geissmann, F., et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005). This report extended the range of tissues imaged to the liver, documenting an unexpected behaviour of natural killer T cells in this organ.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Germain, R. N., et al. An extended vision for dynamic high-resolution intravital immune imaging. Semin. Immunol. 17, 431–441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cavanagh, L. L., et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nature Immunol. 6, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  41. Grayson, M. H., Hotchkiss, R. S., Karl, I. E., Holtzman, M. J. & Chaplin, D. D. Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node. Am. J. Physiol. Heart Circ. Physiol. 284, H2213–2226 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Grayson, M. H., Chaplin, D. D., Karl, I. E. & Hotchkiss, R. S. Confocal fluorescent intravital microscopy of the murine spleen. J. Immunol. Methods 256, 55–63 (2001). A very early report indicating that advanced microscopy tools could be applied to immune-cell imaging in complex tissues.

    Article  CAS  PubMed  Google Scholar 

  43. Wei, S. H., Miller, M. J., Cahalan, M. D. & Parker, I. Two-photon imaging in intact lymphoid tissue. Adv. Exp. Med. Biol. 512, 203–208 (2002).

    Article  PubMed  Google Scholar 

  44. Zinselmeyer, B. H., et al. In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J. Exp. Med. 201, 1815–1823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tutsch, E., Griesemer, D., Schwarz, A., Stallmach, A. & Hoth, M. Two-photon analysis of calcium signals in T lymphocytes of intact lamina propria from human intestine. Eur. J. Immunol. 34, 3477–3484 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002). This study documented the different migratory behaviours of thymocytes in reconstituted thymic aggregates.

    Article  CAS  PubMed  Google Scholar 

  47. Bhakta, N. R., Oh, D. Y. & Lewis, R. S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nature Immunol. 6, 143–151 (2005). This paper introduced the use of Ca2+ reporter dyes for relating lymphocyte behaviour to signalling in a complex tissue environment.

    Article  CAS  Google Scholar 

  48. Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, e160 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kissenpfennig, A., et al. Dynamics and function of Langerhans cells in vivo: Dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Rosenbaum, J. T., et al. Imaging ocular immune responses by intravital microscopy. Int. Rev. Immunol. 21, 255–272 (2002).

    Article  PubMed  Google Scholar 

  51. Kawakami, N., et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201, 1805–1814 (2005). This paper extended the application of two-photon imaging to peripheral sites of lymphocyte effector function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nitsch, R., et al. Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J. Neurosci. 24, 2458–2464 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bajenoff, M., et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hildebrandt, I. J. & Gambhir, S. S. Molecular imaging applications for immunology. Clin. Immunol. 111, 210–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Massoud, T. F. & Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Wei, S. H., Parker, I., Miller, M. J. & Cahalan, M. D. A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunol. Rev. 195, 136–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Catron, D. M., Itano, A. A., Pape, K. A., Mueller, D. L. & Jenkins, M. K. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 21, 341–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Cahalan, M. D. & Parker, I. Close encounters of the first and second kind: T-DC and T-B interactions in the lymph node. Semin. Immunol. 17, 442–451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Castellino, F., et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890–895 (2006). Evidence that chemokine guidance can have a crucial role in fostering cell–cell interactions in lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  60. Bousso, P. & Robey, E. A. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21, 349–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol. 2, 872–880 (2002).

    Article  CAS  Google Scholar 

  62. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Real-time imaging of lymphocytes in vivo. Curr. Opin. Immunol. 15, 372–377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dustin, M. L. In vivo imaging approaches in animal models of rheumatoid arthritis. Arthritis Res. Ther. 5, 165–171 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang, A. Y., Qi, H. & Germain, R. N. Illuminating the landscape of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues. Immunity 21, 331–339 (2004).

    CAS  PubMed  Google Scholar 

  65. Robey, E. A. & Bousso, P. Visualizing thymocyte motility using 2-photon microscopy. Immunol. Rev. 195, 51–57 (2003).

    Article  PubMed  Google Scholar 

  66. Witt, C. M. & Robey, E. A. Thymopoiesis in 4 dimensions. Semin. Immunol. 17, 95–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Bhakta, N. R. & Lewis, R. S. Real-time measurement of signaling and motility during T cell development in the thymus. Semin. Immunol. 17, 411–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  69. Hawiger, D., et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Unutmaz, D., et al. The primate lentiviral receptor BONZO/STRL33 is coordinately regulated with CCR5 and its expression pattern is conserved between human and mouse. J. Immunol. 165, 3284–3292 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Larochelle, A. & Dunbar, C. E. Genetic manipulation of hematopoietic stem cells. Semin. Hematol. 41, 257–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Miyawaki, A. Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48, 189–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Tsien, R. Y. Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927–932 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Gao, X., et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Moore, T. C. Anesthesia-associated depression in lymphocyte traffic and its modulation. Am. J. Surg. 147, 807–812 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. So, P. T., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McCaffrey, A., Kay, M. A. & Contag, C. H. Advancing molecular therapies through in vivo bioluminescent imaging. Mol. Imaging 2, 75–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Sumen, C., Mempel, T. R., Mazo, I. B. & von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

    CAS  PubMed  Google Scholar 

  81. Megason, S. G. & Fraser, S. E. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120, 1407–1420 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Treacy, E. B. Chirped optical pulses. Ann. NY Acad. Sci. 168, 400–418 (1969).

    Article  CAS  PubMed  Google Scholar 

  83. Iyer, V., Losavio, B. E. & Saggau, P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt. 8, 460–471 (2003).

    Article  PubMed  Google Scholar 

  84. Nguyen, Q. T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca2+ imaging. Cell Calcium 30, 383–393 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Fan, G. Y., et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys J. 76, 2412–2420 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 micrometers in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Krummel, M., Wulfing, C., Sumen, C. & Davis, M. M. Thirty-six views of T-cell recognition. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355, 1071–1076. (2000).

    Article  CAS  Google Scholar 

  90. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    Article  PubMed  Google Scholar 

  91. Bird, D. & Gu, M. Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt. Lett. 28, 1552–1554 (2003).

    Article  PubMed  Google Scholar 

  92. Gobel, W., Kerr, J. N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

    Article  PubMed  Google Scholar 

  93. Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    Article  PubMed  Google Scholar 

  94. Flusberg, B. A., et al. Fiber-optic fluorescence imaging. Nature Methods 2, 941–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun, C. K. Higher harmonic generation microscopy. Adv. Biochem. Eng. Biotechnol. 95, 17–56 (2005).

    PubMed  Google Scholar 

  96. Huang, S., Heikal, A. A. & Webb, W. W. Two-photon fluorescence spectroscopy and microscopy of Nad(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zipfel, W. R., et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pinaud, F., et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Torres Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M. & Jain, R. K. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl Acad. Sci. USA 91, 2081–2085 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gustafsson, M. G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dyba, M. & Hell, S. W. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Appl. Opt. 42, 5123–5129 (2003).

    Article  PubMed  Google Scholar 

  102. Holtom, G. R., Thrall, B. D., Chin, B. Y., Wiley, H. S. & Colson, S. D. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques. Traffic 2, 781–788 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Nielsen, T., Fricke, M., Hellweg, D. & Andresen, P. High efficiency beam splitter for multifocal multiphoton microscopy. J. Microsc. 201, 368–376 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Howard Hughes Medical Institute for their sponsorship of the conference during which many of the issues covered in this Review were discussed. They also gratefully acknowledge the free exchange of data and ideas (many unpublished) among investigators active in the imaging field during that meeting, information that was essential to the formulation of this article. Thanks also to J. Egen for his thoughtful comments on drafts of this manuscript. The authors' laboratories have been supported by funds from the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, the National Institutes of Health (NIH),USA (R.N.G.), the Howard Hughes Medical Institute (M.C.N.) and grants from the NIH (M.L.D. and M.C.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald N. Germain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ronald Germain's homepage

Mark Miller's homepage

Michael Dustin's homepage

Michel Nussenzweig's homepage

Glossary

Confocal microscopy

A form of fluorescence microscopy in which out-of-focus signals are rejected by an aperture that restricts all light from reaching the detector except that originating from the focal plane of the excitation spot.

Two-photon microscopy

A fluorescence-imaging technique that takes advantage of the fact that fluorescent molecules can absorb two photons nearly simultaneously during excitation before they emit light. This technique allows all emitted photons to contribute to a useful image.

Positron emission tomography

An imaging method that depends on the three-dimensional detection of (positrons) radiation from a probe that is typically localized to a cell by direct ex vivo labelling or in situ metabolic conversion of a precursor compound.

Magnetic resonance imaging

A method that uses detection of changes in the alignment of protons in a strong magnetic field when they are perturbed by radio wave pulses to generate structural information about an object in that magnetic field.

Luminescence imaging

A technique that uses photons emitted by the process of luminescence, rather than fluorescence, to obtain an image of cells in a living animal. This method is extremely sensitive and non-invasive but generates data of much lower resolution than microscope-based fluorescent imaging.

Knock-in technology

The introduction of a transgene into a precise location in the genome, rather than a random integration site. Knocking-in uses the same technique of homologous recombination as a knockout strategy but the targeting vector is designed to allow expression of the introduced transgene under control of the regulatory elements of the targeted gene.

BAC transgenic technology

A method for creating genetically altered mice in which very large segments of mouse genomic DNA are propagated in bacteria and used to achieve physiological patterns of gene expression. This technique avoids the need to create knock-in mice by homologous recombination in embryonic stem cells.

SIN vectors

Retroviral or lentiviral vectors that contain mutations that inactivate the enhancer element in the 3′ LTR (long terminal repeat). Because the sequence of the 3′ LTR is used to reconstitute the 5′ LTR during reverse transcription, these vectors 'self-inactivate' the 5′ LTR enhancer before integration into the host-cell DNA. This allows exogenous gene regulatory sequences downstream of the 5′ LTR to control gene expression after integration.

Emission spectrum

A quantitative representation of the wavelengths (energies) of the photons emitted from a fluorescent compound after it is excited by shorter wavelength (more energetic) photons from an illumination source.

Excitation optimum

The wavelength of incident light that is best absorbed by and causes maximal emission from a fluorescent compound.

Quantum dot

A nanocrystalline semi-conductor of extremely small size (10–50 nm) that results in its absorption of incident photons, followed by the emission of photons at a slightly longer wavelength. Because of a phenomenon called the quantum confinement effect, the colour (wavelength) of the emitted light is determined by the size of the nanocrystal.

Water-dipping lens

An objective lens for a microscope that is optimized for use with its front surface in contact with an aqueous solution, because there is an improved match in refractive index between the glass and buffer solution that limits spherical aberration in the image.

Second harmonic emission

The non-radiative production of frequency-doubled polarized light emission from a highly ordered (anisotropic) material on illumination by a laser beam. In practical terms, the production of polarized light emission from extracellular matrix materials such as collagen when subjected to two-photon illumination in the absence of fluorochrome labelling.

Galvanometers

A device that uses electric currents to control the mechanical displacement of an object such as a scan mirror that in turn directs a laser beam.

Heisenberg's Uncertainty Principle

The concept that measurement of the properties of an object, in particular momentum and position, cannot be accomplished with complete accuracy. Sometimes used (with some license) to encompass the 'observer effect', which indicates that the mere attempt to measure such properties changes them from their intrinsic state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germain, R., Miller, M., Dustin, M. et al. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6, 497–507 (2006). https://doi.org/10.1038/nri1884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing