Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Chemokines: more than just road signs

Abstract

Chemokines have long been known to orchestrate dendritic-cell migration in the body. However, recent evidence has shown that chemokines not only direct the trafficking of dendritic cells but also can regulate their maturation status. Here, we propose that this dual function of chemokines ensures that T cells and dendritic cells meet in T-cell regions of lymphoid organs and that antigen is presented in an immunologically optimal context for T-cell priming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Licensed DCs undergo terminal differentiation following activation with CCL19 and CCL21.
Figure 2: Subversion of the chemokine system by pathogens.

Similar content being viewed by others

References

  1. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123?1134 (1999).

    Article  CAS  Google Scholar 

  2. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (TH1s) and TH2s. J. Exp. Med. 187, 129?134 (1998).

    Article  CAS  Google Scholar 

  3. Sallusto, F. et al. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur. J. Immunol. 29, 2037?2045 (1999).

    Article  CAS  Google Scholar 

  4. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760?2769 (1998).

    Article  CAS  Google Scholar 

  5. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245?252 (1998).

    Article  CAS  Google Scholar 

  6. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253?256 (2001).

    Article  CAS  Google Scholar 

  7. Geijtenbeek, T. B., van Vliet, S. J., Engering, A., 't Hart, B. A. & van Kooyk, Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33?54 (2004).

    Article  CAS  Google Scholar 

  8. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 3, 371?382 (2003).

    Article  CAS  Google Scholar 

  9. Rogers, N. C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507?517 (2005).

    Article  CAS  Google Scholar 

  10. Sozzani, S. et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161, 1083?1086 (1998).

    CAS  PubMed  Google Scholar 

  11. Yanagihara, S., Komura, E., Nagafune, J., Watarai, H. & Yamaguchi, Y. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is upregulated upon maturation. J. Immunol. 161, 3096?3102 (1998).

    CAS  PubMed  Google Scholar 

  12. Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373?386 (1998).

    Article  CAS  Google Scholar 

  13. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23?33 (1999).

    Article  CAS  Google Scholar 

  14. Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl Acad. Sci. USA 95, 258?263 (1998).

    Article  CAS  Google Scholar 

  15. Yoshida, R. et al. Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol. Chem. 272, 13803?13809 (1997).

    Article  CAS  Google Scholar 

  16. Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451?460 (1999).

    Article  CAS  Google Scholar 

  17. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Co-expression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694?12699 (2000).

    Article  CAS  Google Scholar 

  18. Marsland, B. J. et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493?505 (2005).

    Article  CAS  Google Scholar 

  19. Junt, T. et al. Antiviral immune responses in the absence of organized lymphoid T cell zones in plt/plt mice. J. Immunol. 168, 6032?6040 (2002).

    Article  CAS  Google Scholar 

  20. Ueno, T. et al. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J. Exp. Med. 200, 493?505 (2004).

    Article  CAS  Google Scholar 

  21. Junt, T. et al. Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J. Immunol. 173, 6684?6693 (2004).

    Article  CAS  Google Scholar 

  22. Yanagawa, Y. & Onoe, K. CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant upregulation of Cdc42 and Rac activities. Blood 101, 4923?4929 (2003).

    Article  CAS  Google Scholar 

  23. Yanagawa, Y. & Onoe, K. CCL19 induces rapid dendritic extension of murine dendritic cells. Blood 100, 1948?1956 (2002).

    Article  CAS  Google Scholar 

  24. Sanchez-Sanchez, N. et al. Chemokine receptor CCR7 induces intracellular signalling that inhibits apoptosis of mature dendritic cells. Blood 104, 619?625 (2004).

    Article  CAS  Google Scholar 

  25. Lee, Y., Eo, S. K., Rouse, R. J. & Rouse, B. T. Influence of CCR7 ligand DNA preexposure on the magnitude and duration of immunity. Virology 312, 169?180 (2003).

    Article  CAS  Google Scholar 

  26. Hillinger, S. et al. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-γ-dependent antitumour responses in a lung cancer model. J. Immunol. 171, 6457?6465 (2003).

    Article  CAS  Google Scholar 

  27. Trifilo, M. J. & Lane, T. E. The CC chemokine ligand 3 regulates CD11c+CD11b+CD8α dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327, 8?15 (2004).

    Article  CAS  Google Scholar 

  28. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407?411 (2000).

    Article  CAS  Google Scholar 

  29. Braun, M. C., Lahey, E. & Kelsall, B. L. Selective suppression of IL-12 production by chemoattractants. J. Immunol. 164, 3009?3017 (2000).

    Article  CAS  Google Scholar 

  30. Blease, K. et al. Enhanced pulmonary allergic responses to Aspergillus in CCR2−/− mice. J. Immunol. 165, 2603?2611 (2000).

    Article  CAS  Google Scholar 

  31. Traynor, T. R., Kuziel, W. A., Toews, G. B. & Huffnagle, G. B. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164, 2021?2027 (2000).

    Article  CAS  Google Scholar 

  32. Molon, B. et al. T cell co-stimulation by chemokine receptors. Nature Immunol. 6, 465?471 (2005).

    Article  CAS  Google Scholar 

  33. Karpus, W. J. et al. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol. 158, 4129?4136 (1997).

    CAS  Google Scholar 

  34. Haegel-Kronenberger, H. et al. Adhesive and/or signalling functions of CD44 isoforms in human dendritic cells. J. Immunol. 161, 3902?3911 (1998).

    CAS  PubMed  Google Scholar 

  35. la Sala, A. et al. Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate TH1 responses. J. Immunol. 166, 1611?1617 (2001).

    Article  CAS  Google Scholar 

  36. Brand, U. et al. Influence of extracellular matrix proteins on the development of cultured human dendritic cells. Eur. J. Immunol. 28, 1673?1680 (1998).

    Article  CAS  Google Scholar 

  37. Scandella, E. et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood 103, 1595?1601 (2004).

    Article  CAS  Google Scholar 

  38. Partida-Sanchez, S. et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 20, 279?291 (2004).

    Article  CAS  Google Scholar 

  39. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol. 6, 163?170 (2005).

    Article  Google Scholar 

  40. Ruedl, C., Kopf, M. & Bachmann, M. F. CD8+ T cells mediate CD40-independent maturation of dendritic cells in vivo. J. Exp. Med. 189, 1875?1884 (1999).

    Article  CAS  Google Scholar 

  41. Mintern, J. D., Davey, G. M., Belz, G. T., Carbone, F. R. & Heath, W. R. Cutting edge: precursor frequency affects the helper dependence of cytotoxic T cells. J. Immunol. 168, 977?980 (2002).

    Article  CAS  Google Scholar 

  42. Fujii, S., Liu, K., Smith, C., Bonito, A. J. & Steinman, R. M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 co-stimulation. J. Exp. Med. 199, 1607?1618 (2004).

    Article  CAS  Google Scholar 

  43. Alexander, J. & Hunter, C. A. Immunoregulation during toxoplasmosis. Chem. Immunol. 70, 81?102 (1998).

    Article  CAS  Google Scholar 

  44. Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol. 1, 83?87 (2000).

    Article  CAS  Google Scholar 

  45. Aliberti, J. et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nature Immunol. 4, 485?490 (2003).

    Article  CAS  Google Scholar 

  46. Billich, A., Winkler, G., Aschauer, H., Rot, A. & Peichl, P. Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J. Exp. Med. 185, 975?980 (1997).

    Article  CAS  Google Scholar 

  47. Sherry, B., Yarlett, N., Strupp, A. & Cerami, A. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc. Natl Acad. Sci. USA 89, 3511?3515 (1992).

    Article  CAS  Google Scholar 

  48. Xu, Q., Leiva, M. C., Fischkoff, S. A., Handschumacher, R. E. & Lyttle, C. R. Leukocyte chemotactic activity of cyclophilin. J. Biol. Chem. 267, 11968?11971 (1992).

    CAS  PubMed  Google Scholar 

  49. Lin, C. L. et al. Macrophage-tropic HIV induces and exploits dendritic cell chemotaxis. J. Exp. Med. 192, 587?594 (2000).

    Article  CAS  Google Scholar 

  50. Weissman, D., Li, Y., Orenstein, J. M. & Fauci, A. S. Both a precursor and a mature population of dendritic cells can bind HIV. However, only the mature population that expresses CD80 can pass infection to unstimulated CD4+ T cells. J. Immunol. 155, 4111?4117 (1995).

    CAS  PubMed  Google Scholar 

  51. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F. P. & Steinman, R. M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Natl Acad. Sci. USA 101, 7669?7674 (2004).

    Article  CAS  Google Scholar 

  52. Majumder, B. et al. Human immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escape. J. Virol. 79, 7990?8003 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Harris and G. Jennings for carefully reading the manuscript and R. Steinman for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Bachmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Martin Bachmann's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, M., Kopf, M. & Marsland, B. Chemokines: more than just road signs. Nat Rev Immunol 6, 159–164 (2006). https://doi.org/10.1038/nri1776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing