RESEARCH

HIGHLIGHTS

HIGHLIGHT ADVISORS

CEZMI AKDIS

SWISS INSTITUTE OF ALLERGY AND ASTHMA RESEARCH, SWITZERLAND

BRUCE BEUTLER

SCRIPPS RESEARCH INSTITUTE, USA

PETER CRESSWELL

YALE UNIVERSITY, USA

JAMES DI SANTO

PASTEUR INSTITUTE, FRANCE

GARY KORETZKY

UNIVERSITY OF PENNSYLVANIA, USA

CHARLES MACKAY

GARVAN INSTITUTE OF MEDICAL RESEARCH, AUSTRALIA

CORNELIS J. M. MELIEF

LEIDEN UNIVERSITY MEDICAL CENTRE, THE NETHERLANDS

MICHEL NUSSENZWEIG

THE ROCKEFELLER UNIVERSITY, USA

RICHARD RANSOHOFF

CLEVELAND CLINIC FOUNDATION, USA

ALAN SHER

NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASE, USA

ANDREAS STRASSER

THE WALTER AND ELIZA HALL INSTITUTE, AUSTRALIA

MEGAN SYKES

HARVARD MEDICAL SCHOOL, USA

ERIC VIVIER

CENTRE D'IMMUNOLOGIE DE MARSEILLE-LUMINY, FRANCE

MATTHIAS VON HERRATH

LA JOLLA INSTITUTE FOR ALLERGY AND IMMUNOLOGY, USA

CYTOKINES

IL-17-producing cells go it alone

Two recent reports in *Nature Immunology* identify interleukin-17 (IL-17)-producing cells as a unique T helper ($T_{\rm H}$)-cell lineage with developmental requirements that are distinct from those of $T_{\rm H}1$ and $T_{\rm H}2$ cells.

IL-23-dependent, IL-17-producing CD4+ T cells are associated with autoimmunity. However, it is not clear whether these cells differentiate along a pathway that is distinct from those pathways that give rise to T_u1 and T_u2 cells or whether they are derived from a T₁₁1-cell intermediate. Both groups set out to address this issue and found that, when naive CD4⁺ T cells were stimulated in vitro through their T-cell receptor (TCR) in the presence of IL-23, few cells produced IL-17, but a substantial proportion produced interferon-γ (IFN-γ). However, if IFN-γ-specific antibody was also included in the culture then a large population of IL-17-producing cells emerged. A further increase in the proportion of IL-17-producing CD4+ T cells was observed if IL-4-specific antibody was also added to the culture, indicating that IFN-γ and IL-4 independently inhibit the generation of IL-17-producing cells.

Harrington *et al.* further investigated the factors that are required for the development of IL-17-producing cells *in vitro*. They found that naive CD4⁺T cells isolated from mice that were deficient in signal transducer and activator of transcription 1 (STAT1), STAT4 or T-bet (factors

that are required for differentiation into $T_H 1$ cells) were not impaired in their ability to differentiate into IL-17-producing cells when stimulated through their TCR in the presence of IL-23. Similarly, the development of IL-17-producing cells was not impaired when the stimulated naive CD4+ T cells were isolated from mice that were deficient in STAT6, which promotes differentiation into $T_H 2$ cells.

Park et al. generated similar data in vivo: they found that the generation of IL-17-producing CD4⁺ T cells following immunization with antigen and complete Freund's adjuvant (CFA) was not impaired in mice that were deficient in STAT4, STAT6 or T-bet. However, the generation of IL-17-producing CD4⁺ T cells following immunization with antigen and CFA was impaired in mice that were deficient in CD80 and CD86 and in

mice that were deficient in inducible T-cell co-stimulator (ICOS), indicating that CD28 and ICOS are required for the development of these cells.

These studies clearly define IL-17-producing CD4 $^{+}$ T cells as a unique subset of T_H cells that develop along a pathway that is distinct from the T_H 1-and T_H 2-cell differentiation pathways. Given the clear pathogenic effects of IL-17-producing CD4 $^{+}$ T cells in autoimmune disease, both groups suggest that upsetting the balance of IFN- γ and IL-4 could be a contributing factor to autoimmunity.

Karen Honev

References and links

ORIGINAL RESEARCH PAPERS Harrington, L. E. et al. Interleukin 17-producing CD4* effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005) | Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005)