Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Unique features of the pre-T-cell receptor α-chain: not just a surrogate

Abstract

The pre-T-cell receptor (pre-TCR) has a crucial role in the normal development of αβ T cells. Different views have emerged concerning the structure and function of the pre-TCR. This molecular complex can be viewed as a variant of the αβ-TCR in which the pre-TCR α-chain that is covalently associated with the TCR β-chain is a 'surrogate' TCR α-chain. Alternatively, the unique structure of the pre-TCR might be associated with a unique function, owing to evolutionary selection of a pre-TCR α-chain that has different capabilities from the TCR α-chain. As described here, I consider that experimental evidence favours the latter view.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization of the mouse locus encoding the pre-T-cell receptor α-chain.
Figure 2: The pre-T-cell receptor and the αβ-T-cell receptor.
Figure 3: Early stages of development of CD4CD8 (double negative) and CD4+CD8+ (double positive) thymocytes.
Figure 4: Pre-T-cell-receptor-dependent signal transduction and activation of transcription factors.

Similar content being viewed by others

References

  1. Snodgrass, H. R., Dembic, Z., Steinmetz, M. & von Boehmer, H. Expression of T-cell antigen receptor genes during fetal development in the thymus. Nature 315, 232–233 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Raulet, D. H., Garman, R. D., Saito, H. & Tonegawa, S. Developmental regulation of T-cell receptor gene expression. Nature 314, 103–107 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. von Boehmer, H. Developmental biology of T cells in T cell-receptor transgenic mice. Annu. Rev. Immunol. 8, 531–556 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Kishi, H. et al. Surface expression of the β T cell receptor (TCR) chain in the absence of other TCR or CD3 proteins on immature T cells. EMBO J. 10, 93–100 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Mallick, C. A., Dudley, E. C., Viney, J. L., Owen, M. J. & Hayday, A. C. Rearrangement and diversity of T cell receptor β chain genes in thymocytes: a critical role for the β chain in development. Cell 73, 513–519 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Groettrup, M., Baron, A., Griffiths, G., Palacios, R. & von Boehmer, H. T cell receptor (TCR) β chain homodimers on the surface of immature but not mature α, γ, δ chain deficient T cell lines. EMBO J. 11, 2735–2745 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groettrup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell 75, 283–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Saint-Ruf, C. et al. Analysis and expression of a cloned pre-T cell receptor gene. Science 266, 1208–1212 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Borowski, C., Li, X., Aifantis, I., Gounari, F. & von Boehmer, H. Pre-TCRα and TCRα are not interchangeable partners of TCRβ during T lymphocyte development. J. Exp. Med. 199, 607–615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haks, M. C. et al. Low activation threshold as a mechanism for ligand-independent signaling in pre-T cells. J. Immunol. 170, 2853–2861 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Janeway, C. A. Jr, Travers, P., Walport, M. & Schlomchik, M. J. (eds) Immunobiology 256 (Garland Science, New York, 2005).

    Google Scholar 

  15. Fehling, H. J., Laplace, C., Mattei, M. G., Saint-Ruf, C. & von Boehmer, H. Genomic structure and chromosomal location of the mouse pre-T-cell receptor α gene. Immunogenetics 42, 275–281 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Saint-Ruf, C., Lechner, O., Feinberg, J. & von Boehmer, H. Genomic structure of the human pre-T cell receptor α chain and expression of two mRNA isoforms. Eur. J. Immunol. 28, 3824–3831 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Del Porto, P., Bruno, L., Mattei, M. G., von Boehmer, H. & Saint-Ruf, C. Cloning and comparative analysis of the immunoglobulin heavy human pre-T-cell receptor α-chain gene. Proc. Natl Acad. Sci. USA 92, 12105–12109 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barber, D. F., Passoni, L., Wen, L., Geng, L. & Hayday, A. C. The expression in vivo of a second isoform of pTα: implications for the mechanism of pTα action. J. Immunol. 161, 11–16 (1998).

    CAS  PubMed  Google Scholar 

  19. Melchers, F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nature Rev. Immunol. 5, 578–584 (2005).

    Article  CAS  Google Scholar 

  20. Reizis, B. & Leder, P. Expression of the mouse pre-T cell receptor α gene is controlled by an upstream region containing a transcriptional enhancer. J. Exp. Med. 189, 1669–1678 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reizis, B. & Leder, P. The upstream enhancer is necessary and sufficient for the expression of the pre-T cell receptor α gene in immature T lymphocytes. J. Exp. Med. 194, 979–990 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reizis, B. & Leder, P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16, 295–300 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bruno, L., Rocha, B., Rolink, A., von Boehmer, H. & Rodewald, H. R. Intra- and extra-thymic expression of the pre-T cell receptor α gene. Eur. J. Immunol. 25, 1877–1882 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Kondo, M., Akashi, K., Domen, J., Sugamura, K. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common γ chain-deficient mice. Immunity 7, 155–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Gounari, F. et al. Tracing lymphopoiesis with the aid of a pTα-controlled reporter gene. Nature Immunol. 3, 489–496 (2002).

    Article  CAS  Google Scholar 

  26. Martin, C. H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nature Immunol. 4, 866–873 (2003).

    Article  CAS  Google Scholar 

  27. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Trop, S., Rhodes, M., Wiest, D. L., Hugo, P. & Zuniga-Pflucker, J. C. Competitive displacement of pTα by TCR-α during TCR assembly prevents surface coexpression of pre-TCR and αβ TCR. J. Immunol. 165, 5566–5572 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Groves, T., Parsons, M., Miyamoto, N. G. & Guidos, C. J. TCR engagement of CD4+CD8+ thymocytes in vitro induces early aspects of positive selection, but not apoptosis. J. Immunol. 158, 65–75 (1997).

    CAS  PubMed  Google Scholar 

  31. Trop, S., Steff, A. M., Denis, F., Wiest, D. L. & Hugo, P. The connecting peptide domain of pTα dictates weak association of the pre-T cell receptor with the TCRζ subunit. Eur. J. Immunol. 29, 2187–2196 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Panigada, M. et al. Constitutive endocytosis and degradation of the pre-T cell receptor. J. Exp. Med. 195, 1585–1597 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-ε gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buer, J., Aifantis, I., DiSanto, J. P., Fehling, H. J. & von Boehmer, H. Role of different T cell receptors in the development of pre-T cells. J. Exp. Med. 185, 1541–1547 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sleckman, B. P., Bardon, C. G., Ferrini, R., Davidson, L. & Alt, F. W. Function of the TCRα enhancer in αβ and γδ T cells. Immunity 7, 505–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Passoni, L. et al. Intrathymic δ selection events in γδ cell development. Immunity 7, 83–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Kang, J., Coles, M., Cado, D. & Raulet, D. H. The developmental fate of T cells is critically influenced by TCRγδ expression. Immunity 8, 427–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Ishida, I. et al. T-cell receptor γδ and γ transgenic mice suggest a role of a γ gene silencer in the generation of αβ T cells. Proc. Natl Acad. Sci. USA 87, 3067–3071 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chien, Y. -H., Iwashima, M., Kaplan, K. B., Elliott, J. F. & Davis, M. M. A new T-cell receptor gene located within the α locus and expressed early in T-cell differentiation. Nature 327, 677–682 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Lynch, F. & Shevach, E. M. γδ T cells promote CD4 and CD8 expression by SCID thymocytes. Int. Immunol. 5, 991–995 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Penit, C., Lucas, B. & Vasseur, F. Cell expansion and growth arrest phases during the transition from precursor (CD48) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J. Immunol. 154, 5103–5113 (1995).

    CAS  PubMed  Google Scholar 

  42. Kitamura, D. et al. A critical role of λ5 protein in B cell development. Cell 69, 823–831 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. von Boehmer, H. et al. Thymic selection revisited: how essential is it? Immunol. Rev. 191, 62–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Aifantis, I. et al. On the role of the pre-T cell receptor in αβ versus γδ T lineage commitment. Immunity 9, 649–655 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Wilson, A., Marechal, C. & MacDonald, H. R. Biased Vβ usage in immature thymocytes is independent of DJβ proximity and pTα pairing. J. Immunol. 166, 51–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. ten Boekel, E., Melchers, F. & Rolink, A. G. Changes in the VH gene repertoire of developing precursor B lymphocytes in mouse bone marrow mediated by the pre-B cell receptor. Immunity 7, 357–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Alt, F. W. et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 3, 1209–1219 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uematsu, Y. et al. In transgenic mice the introduced functional T cell receptor β gene prevents expression of endogenous β genes. Cell 52, 831–841 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Ardouin, L., Ismaili, J., Malissen, B. & Malissen, M. The CD3-γδε and CD3-ζη modules are each essential for allelic exclusion at the T cell receptor β locus but are both dispensable for the initiation of V to (D)J recombination at the T cell receptor-β, -γ, and -δ loci. J. Exp. Med. 187, 105–116 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krotkova, A., von Boehmer, H. & Fehling, H. J. Allelic exclusion in pTα-deficient mice: no evidence for cell surface expression of two T cell receptor (TCR)-β chains, but less efficient inhibition of endogeneous Vβ→(D)Jβ rearrangements in the presence of a functional TCR-β transgene. J. Exp. Med. 186, 767–775 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aifantis, I., Buer, J., von Boehmer, H. & Azogui, O. Essential role of the pre-T cell receptor in allelic exclusion of the T cell receptor β locus. Immunity 7, 601–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Loffert, D., Ehlich, A., Muller, W. & Rajewsky, K. Surrogate light chain expression is required to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4, 133–144 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. ten Boekel, E., Melchers, F. & Rolink, A. G. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8, 199–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Saint-Ruf, C. et al. Different initiation of pre-TCR and γδTCR signalling. Nature 406, 524–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Aifantis, I. et al. Allelic exclusion of the T cell receptor β locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J. Exp. Med. 190, 1093–1102 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aifantis, I. et al. A critical role for the cytoplasmic tail of pTα in T lymphocyte development. Nature Immunol. 3, 483–488 (2002).

    Article  CAS  Google Scholar 

  58. Gibbons, D. et al. The biological activity of natural and mutant pTα alleles. J. Exp. Med. 194, 695–703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fehling, H. J. et al. Restoration of thymopoiesis in pTα−/− mice by anti-CD3ε antibody treatment or with transgenes encoding activated Lck or tailless pTα. Immunity 6, 703–714 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Killeen, N. A new spin on an unusual tail. Nature Immunol. 3, 419–421 (2002).

    Article  CAS  Google Scholar 

  61. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nature Immunol. 4, 849–856 (2003).

    Article  CAS  Google Scholar 

  62. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. von Boehmer, H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv. Immunol. 84, 201–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Michie, A. M. & Zuniga-Pflucker, J. C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Eyquem, S., Chemin, K., Fasseu, M. & Bories, J. C. The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor β locus. Proc. Natl Acad. Sci. USA 101, 15712–15717 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Gartner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity 10, 537–546 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Engel, I. & Murre, C. The function of E- and Id proteins in lymphocyte development. Nature Rev. Immunol. 1, 193–199 (2001).

    Article  CAS  Google Scholar 

  70. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T-cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. von Boehmer, H. Coming to grips with Notch. J. Exp. Med. 194, F43–F46 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bellavia, D. et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl Acad. Sci. USA 99, 3788–3793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Teh, H. S. et al. Early deletion and late positive selection of T cells expressing a male-specific receptor in T-cell receptor transgenic mice. Dev. Immunol. 1, 1–10 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bruno, L., Fehling, H. J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Terrence, K., Pavlovich, C. P., Matechak, E. O. & Fowlkes, B. J. Premature expression of T cell receptor (TCR)αβ suppresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Livak, F., Petrie, H. T., Crispe, I. N. & Schatz, D. G. In-frame TCR δ gene rearrangements play a critical role in the αβ/γδ T cell lineage decision. Immunity 2, 617–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. von Boehmer, H. et al. Crucial function of the pre-T-cell receptor (TCR) in TCR β selection, TCR β allelic exclusion and αβ versus γδ lineage commitment. Immunol. Rev. 165, 111–119 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CSL

MYB

Notch

pTα

RAG2

TCR-α

TCR-β

Tcrg

Tcrd

FURTHER INFORMATION

Harald von Boehmer's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Boehmer, H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat Rev Immunol 5, 571–577 (2005). https://doi.org/10.1038/nri1636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing