RESEARCH HIGHLIGHTS

HIGHLIGHT ADVISORS

CEZMI AKDIS

SWISS INSTITUTE OF ALLERGY AND ASTHMA RESEARCH, SWITZERLAND

BRUCE BEUTLER

SCRIPPS RESEARCH INSTITUTE, USA

PETER CRESSWELL YALE UNIVERSITY, USA

JAMES DI SANTO PASTEUR INSTITUTE, FRANCE

GARY KORETZKY UNIVERSITY OF

PENNSYLVANIA, USA CHARLES MACKAY

MEDICAL RESEARCH, AUSTRALIA

CORNELIS J. M. MELIEF

LEIDEN UNIVERSITY MEDICAL CENTRE, THE NETHERLANDS

MICHEL NUSSENZWEIG

THE ROCKEFELLER UNIVERSITY, USA

ALAN SHER

NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASE, USA

ANDREAS STRASSER

THE WALTER AND ELIZA HALL INSTITUTE, AUSTRALIA

MEGAN SYKES

HARVARD MEDICAL SCHOOL, USA

ERIC VIVIER

CENTRE D'IMMUNOLOGIE DE MARSEILLE-LUMINY, FRANCE

MATTHIAS VON HERRATH

LA JOLLA INSTITUTE FOR ALLERGY AND IMMUNOLOGY, USA.

T-CELL DEVELOPMENT

Committing to the CD4 lineage

The molecular mechanisms that regulate one of the key decisions in T-cell development — the CD4/CD8 lineage choice — have been difficult to identify. Now, in a study published in *Nature*, the transcription factor T-helper-inducing POZ/Krüppel-like factor (Th-POK; also known as cKROX and ZFP76) is characterized as the central regulator of this decision.

Positive selection of a thymocyte occurs if its T-cell receptor (TCR) interacts with a self-peptide-MHC complex. The CD4/CD8 lineage choice occurs concomitantly with this, and it correlates with TCR engagement of self-peptide-MHC class II or class I, respectively. Previous studies of mice with a spontaneous recessive mutation, the helper deficient (HD) mutation, identified a locus that is required for CD4 lineage commitment, because in these mice, MHC-class-II-restricted thymocytes are redirected to the CD8 lineage. So, He et al. set out to characterize the molecular defects in HD mice. Initial studies showed that the redirection of MHC-class-II-restricted thymocytes to the CD8 lineage was not the result of either a defect in CD4 expression or inappropriate upregulation of CD8 expression. Similarly, no defects in signalling downstream of the TCR were detected, indicating that the HD mutation affects only T-cell lineage commitment.

Genetic mapping and a bacterialartificial-chromosome complementation approach were used to identify *Th-pok* as the candidate HD gene.

Consistent with this, in HD mice, cDNA encoding Th-POK was shown to have a single nucleotide substitution that resulted in an amino-acid substitution at a position predicted to mediate DNA binding.

In the thymus of wild-type mice, mRNA encoding Th-POK was specifically expressed by CD4 single positive (SP) thymocytes and by MHC-class-II-restricted CD4+CD8low thymocytes. Overexpression of wildtype Th-POK by bone-marrow cells from HD mice led to the TCRdependent generation of CD4+ SP thymocytes and an absence of CD8+ SP thymocytes. Further evidence of a crucial role for Th-POK in lineage commitment was provided by the observation that the CD8+ SP thymocyte population found in transgenic mice expressing an MHC-class-Irestricted TCR was absent if the T cells of these mice were engineered to express Th-POK. Instead, these mice had CD4⁺ SP thymocytes that expressed *Gata3* mRNA (a marker of CD4 lineage commitment) but not perforin mRNA (a marker of CD8 lineage commitment).

This study shows that Th-POK is a crucial regulator of T-cell lineage commitment: during positive selection its expression leads to CD4 lineage commitment, and only in its absence can a cell become committed to the CD8 lineage. Future studies to identify the factors controlled by Th-POK will provide insight into the molecular pathways that determine the CD4/CD8 lineage choice.

Karen Honey

References and links ORIGINAL RESEARCH PAPER He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005)