Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of models in understanding CD8+ T-cell memory

Key Points

  • Immunological memory — the ability to 'remember' previously encountered pathogens and respond faster on re-exposure — is a central feature of the immune response of vertebrates. We outline how mathematical models have contributed to our understanding of CD8+ T-cell memory.

  • Mathematical models can help with the following: estimating parameters of immune responses, understanding non-linear processes, discriminating between different hypotheses and predicting features of immune responses for long time periods.

  • Estimating parameters: mathematical models can help to estimate parameters that cannot be measured directly. These include the precursor frequency of naive CD8+ T cells and the rates of clonal expansion and clonal contraction of these cells during the primary immune response after exposure to a pathogen.

  • Understanding non-linear processes: mathematical models are a valuable tool for understanding the complex non-linear interactions that characterize biological systems. We show how models have allowed us to consider the combined effects of homeostasis, bystander stimulation and crossreactive stimulation on the longevity of immune memory.

  • Discriminating between different hypotheses: mathematical models can help us to discriminate between alternative hypotheses. We describe how models have helped to discriminate between different pathways for the differentiation of CD8+ T cells during a primary immune response.

  • Predicting for long time-scales: mathematical models can be a useful tool for predicting phenomena that occur for long time periods. For example, after further development and testing, it might be possible to use models that allow us to rapidly predict the effect of different factors on the longevity of memory during the human lifespan.

Abstract

Immunological memory — the ability to 'remember' previously encountered pathogens and respond faster on re-exposure — is a central feature of the immune response of vertebrates. We outline how mathematical models have contributed to our understanding of CD8+ T-cell memory. Together with experimental data, models have helped to quantitatively describe and to further our understanding of both the generation of memory after infection with a pathogen and the maintenance of this memory throughout the life of an individual.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunological memory can be divided into distinct phases with different time-scales.
Figure 2: The consequences of bystander and crossreactive stimulation for the number of memory cells of different lineages in the absence and presence of homeostasis.

Similar content being viewed by others

References

  1. Janeway, C. A., Travers, P., Walport, M. & Shlomchik, M. Immunobiology 5th edn (Garland, New York, 2004)

    Google Scholar 

  2. Goldsby, R. A., Kindt, T. J., Osborne, B. & Kuby, J. Immunology 4th edn (Freeman, New York, 2002).

    Google Scholar 

  3. Thucydides, T. B. C. R. The Peloponnesian War (Dutton, New York, 1910). (Translated by J. M. Dent.)

    Google Scholar 

  4. Pasteur, L. in Milestones in Microbiology (Ed. Brock, T.) 121–125 (American Society for Microbiology, Washington DC, 1998).

    Google Scholar 

  5. Salmon, D. & Smith, T. On a new method of producing immunity from contagious diseases. Am. Vet. Rev. 10, 63–69 (1886).

    Google Scholar 

  6. Roux, E. Immunite contre la septicemie conferee par des substances solubles. Ann. Inst. Pasteur (Paris) 1, 561–572 (1887) (in French).

    Google Scholar 

  7. Fenner, F. Biological control, as exemplified by smallpox eradication and myxomatosis. Proc. R. Soc. Lond. B 218, 259–285 (1983).

    CAS  PubMed  Google Scholar 

  8. Baxby, D. Two hundred years of vaccination. Curr. Biol. 6, 769–772 (1996).

    CAS  PubMed  Google Scholar 

  9. Bazin, H. A brief history of the prevention of infectious diseases by immunizations. Comp. Immunol. Microbiol. Infect. Dis. 26, 293–308 (2003).

    PubMed  Google Scholar 

  10. Burnet, F. The Clonal Selection Theory of Acquired Immunity (Cambridge Univ. Press, 1959)

    Google Scholar 

  11. Calarota, S. A. & Weiner, D. B. Present status of human HIV vaccine development. AIDS 17 (Suppl. 4), S73–S84 (2003).

    PubMed  Google Scholar 

  12. Pouniotis, D. S., Proudfoot, O., Minigo, G., Hanley, J. C. & Plebanski, M. A new boost for malaria vaccines. Trends Parasitol. 20, 157–160 (2004).

    CAS  PubMed  Google Scholar 

  13. Berzofsky, J. A. et al. . Progress on new vaccine strategies against chronic viral infections. J. Clin. Invest. 114, 450–462 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).

    Google Scholar 

  15. Levin, S., Grenfell, B., Hastings, A. & Perelson, A. Mathematical and computational challenges in population biology and ecosystems science. Science 275, 334–343 (1997).

    CAS  PubMed  Google Scholar 

  16. May, R. Uses and abuses of mathematics in biology. Science 303, 790–793 (2004).

    CAS  PubMed  Google Scholar 

  17. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Murali-Krishna, K. et al. . Counting antigen-specific CD8+ T cells: a re-evaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998). Understanding immune responses requires accurate quantitative measurements of the dynamics of T cells after infection. This paper and reference 49 describe T-cell responses after infection of mice with LCMV.

    CAS  PubMed  Google Scholar 

  19. Blattman, J. N. et al. . Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. De, Boer, R., J. et al. Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75, 10663–10669 (2001). This paper shows how mathematical models can be used to estimate parameters for the clonal expansion and contraction of CD8+ T cells after infection.

    Google Scholar 

  21. De, Boer, R., J., Homann, D. & Perelson, A. S. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171, 3928–3935 (2003).

    Google Scholar 

  22. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A. S. & Ho, D. D. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998).

    CAS  PubMed  Google Scholar 

  23. Mohri, H. et al. . Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonhoeffer, S., Mohri, H., Ho, D. & Perelson, A. S. Quantification of cell turnover kinetics using 5-bromo-2′-deoxyuridine. J. Immunol. 164, 5049–5054 (2000).

    CAS  PubMed  Google Scholar 

  25. Asquith, B., Debacq, C., Macallan, D. C., Willems, L. & Bangham, C. R. Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol. 23, 596–601 (2002).

    CAS  PubMed  Google Scholar 

  26. Pilyugin, S. S., Ganusov, V. V., Murali-Krishna, K., Ahmed, R. & Antia, R. The rescaling method for quantifying the turnover of cell populations. J. Theor. Biol. 225, 275–283 (2003).

    PubMed  Google Scholar 

  27. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    CAS  PubMed  Google Scholar 

  28. Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nature Immunol. 1, 239–244 (2000).

    CAS  Google Scholar 

  29. Deenick, E. K., Gett, A. V. & Hodgkin, P. D. Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–4972 (2003).

    CAS  PubMed  Google Scholar 

  30. Smith, J. A. & Martin, L. Do cells cycle?. Proc. Natl Acad. Sci. USA 70, 1263–1267 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    CAS  PubMed  Google Scholar 

  32. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    CAS  PubMed  Google Scholar 

  33. Wodarz, D., May, R. M. & Nowak, M. A. The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Int. Immunol. 12, 467–477 (2000).

    CAS  PubMed  Google Scholar 

  34. Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000).

    CAS  PubMed  Google Scholar 

  35. Kaech, S. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    CAS  Google Scholar 

  36. van Stipdonk, M. J. B., Lemmens, E. E. & Schoenberger, S. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 2, 415–422 (2001). References 34–36 and 41 describe the experimental basis of the programmed CD8+ T-cell response.

    Google Scholar 

  37. Wong, P. & Pamer, E. G. Antigen-independent CD8 T cell proliferation. J. Immunol. 166, 5864–5868 (2001).

    CAS  PubMed  Google Scholar 

  38. Antia, R., Bergstrom, C. T., Pilyugin, S. S., Kaech, S. M. & Ahmed, R. Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol. 221, 585–598 (2003). This paper describes the modelling of the role of antigen-dependent and -independent proliferation during the T-cell response. The authors suggested that the clonal-expansion phase of the CD8+ T-cell response must have both antigen-dependent and -independent components.

    CAS  PubMed  Google Scholar 

  39. Allan, M. J., Callard, R., Stark, J. & Yates, A. Comparing antigen-independent mechanisms of T cell regulation. J. Theor. Biol. 228, 81–95 (2004).

    CAS  PubMed  Google Scholar 

  40. Chao, D. L., Davenport, M. P., Forrest, S. & Perelson, A. S. Modelling the impact of antigen kinetics on T-cell activation and response. Immunol. Cell Biol. 82, 55–61 (2004).

    CAS  PubMed  Google Scholar 

  41. Vijh, S., Pilip, I. & Pamer, E. Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect. Immun. 67, 1303–1309 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matzinger, P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).

    CAS  PubMed  Google Scholar 

  43. Medzhitov, R. & Janeway, C. A. Innate immune recognition and control of adaptive immune responses. Semin. Immunol. 10, 351–353 (1998).

    CAS  PubMed  Google Scholar 

  44. Gooding, L. R. Virus proteins that counteract host immune defenses. Cell 71, 5–7 (1992).

    CAS  PubMed  Google Scholar 

  45. Evans, D. T. & Desrosiers, R. C. Immune evasion strategies of the primate lentiviruses. Immunol. Rev. 183, 141–158 (2001).

    CAS  PubMed  Google Scholar 

  46. Panum, P. Lagttagelser, anstillede under maeslinge-epidemien paa Faeroerne i a aret 1846. Arch. Pathol. Anat. Physiol. Klin. Med. 1, 492–512 (1847) (in Danish).

    Google Scholar 

  47. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    CAS  PubMed  Google Scholar 

  48. Crotty, S. & Ahmed, R. Immunological memory in humans. Semin. Immunol. 16, 197–203 (2004).

    CAS  PubMed  Google Scholar 

  49. Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med. 7, 913–919 (2001).

    CAS  PubMed  Google Scholar 

  50. Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nature Med. 9, 1131–1137 (2003).

    CAS  PubMed  Google Scholar 

  51. Crotty, S. et al. Long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969–4973 (2003).

    CAS  PubMed  Google Scholar 

  52. Combadiere, B. et al. Distinct time effects of vaccination on long-term proliferative and IFN-γ-producing T cell memory to smallpox in humans. J. Exp. Med. 199, 1585–1593 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tough, D. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    CAS  PubMed  Google Scholar 

  54. Tough, D., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferonin vivo. Science 272, 1947–1950 (1996).

    CAS  PubMed  Google Scholar 

  55. Sprent, J. Turnover of memory-phenotype CD8+ T cells. Microbes Infect. 5, 227–231 (2003).

    CAS  PubMed  Google Scholar 

  56. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    CAS  PubMed  Google Scholar 

  57. McLean, A. & Michie, C. In vivo estimates of division and death rates of human T lymphocytes. Proc. Natl Acad. Sci. USA 92, 3707–3711 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gray, D. A role for antigen in the maintenance of immunological memory. Nature Rev. Immunol. 2, 60–65 (2002).

    CAS  Google Scholar 

  59. Zinkernagel, R. On differences between immunity and immunological memory. Curr. Opin. Immunol. 14, 523–536 (2002).

    CAS  PubMed  Google Scholar 

  60. Gray, D. & Skarvall, H. B-cell memory is short lived in the absence of antigen. Nature 336, 70–73 (1988).

    CAS  PubMed  Google Scholar 

  61. Gray, D. & Matzinger, P. T cell memory is short-lived in the absence of antigen. J. Exp. Med. 174, 969–974 (1991).

    CAS  PubMed  Google Scholar 

  62. Lau, L., Jamieson, B., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).

    CAS  PubMed  Google Scholar 

  63. Hou, S., Hyland, L., Ryan, K., Portner, A. & Doherty, P. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    CAS  PubMed  Google Scholar 

  64. Mullbacher, A. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J. Exp. Med. 179, 317–321 (1994).

    CAS  PubMed  Google Scholar 

  65. Swain, S. L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    CAS  PubMed  Google Scholar 

  66. Ahmed, R. Tickling memory T cells. Science 272, 1904(1996).

    CAS  PubMed  Google Scholar 

  67. Beverley, P. Is T-cell memory maintained by crossreactive stimulation? Immunol. Today 11, 203–205 (1990).

    CAS  PubMed  Google Scholar 

  68. Selin, L., Nahill, S. & Welsh, R. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933–1943 (1994).

    CAS  PubMed  Google Scholar 

  69. Tanchot, C. & Rocha, B. The peripheral T cell repertoire: independent homeostatic regulation of virgin and activated CD8+ T cell pools. Eur. J. Immunol. 25, 2127–2136 (1995).

    CAS  PubMed  Google Scholar 

  70. Freitas, A. & Rocha, B. Lymphocyte lifespans: homeostasis, selection and competition. Immunol. Today 14, 25–29 (1993). The importance of homeostatic regulation of the total population size of CD8+ memory T cells for the maintenance of memory was first proposed in this paper.

    CAS  PubMed  Google Scholar 

  71. Goldrath, A. W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Becker, T. C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. McLean, A. & Kirkwood, T. A model of human immunodeficiency virus (HIV) infection in T helper cell clones. J. Theor. Biol. 147, 177–203 (1990).

    CAS  PubMed  Google Scholar 

  75. McLean, A. R. Modelling T cell memory. J. Theor. Biol. 170, 63–74 (1994).

    CAS  PubMed  Google Scholar 

  76. Antia, R., Pilyugin, S. & Ahmed, R. Models of immune memory: on the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory. Proc. Natl Acad. Sci. USA 95, 14926–14931 (1998). This study develops a quantitative model for the loss of CD8+ T-cell memory with time and describes why the bystander-stimulation hypothesis for the maintenance of memory should be rejected.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cossarizza, A. et al. CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech. Ageing Dev. 86, 173–195 (1996).

    CAS  PubMed  Google Scholar 

  78. Selin, L. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    CAS  PubMed  Google Scholar 

  79. Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Selin, L., Vergilis, K., Welsh, R. & Nahill, S. Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J. Exp. Med. 183, 2489–2499 (1996).

    CAS  PubMed  Google Scholar 

  81. Brehm, M. et al. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nature Immunol. 3, 627–634 (2002).

    CAS  Google Scholar 

  82. Weng, N., Levine, B., June, C. & Hodes, R. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl Acad. Sci. USA 92, 11091–11094 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. De Boer, R. J. & Noest, A. J. T cell renewal rates, telomerase, and telomere length shortening. J. Immunol. 160, 5832–5837 (1998).

    CAS  PubMed  Google Scholar 

  84. Akbar, A. N., Beverley, P. C. & Salmon, M. Will telomere erosion lead to a loss of T-cell memory?. Nature Rev. Immunol. 4, 737–743 (2004).

    CAS  Google Scholar 

  85. Merrill, S., De Boer, R. & Perelson, A. Development of the T cell repertoire: clone size distribution Rocky Mount. 24, 213–231 (1994).

    Google Scholar 

  86. Callard, R., Stark, J. & Yates, A. Fratricide: a mechanism for T memory-cell homeostasis. Trends Immunol. 24, 370–375 (2003).

    CAS  PubMed  Google Scholar 

  87. Selin, L. K. et al. CD8 memory T cells: cross-reactivity and heterologous immunity. Semin. Immunol. 16, 335–347 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wick, D. & Self, S. G. Early HIV infection in vivo: branching-process model for studying timing of immune responses and drug therapy. Math. Biosci. 165, 115–134 (2000).

    CAS  PubMed  Google Scholar 

  89. Davenport, M. P., Ribeiro, R. M. & Perelson, A. S. Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection. J. Virol. 78, 10096–10103 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulationin vivo. Nature Immunol. 1, 47–53 (2000).

    CAS  Google Scholar 

  91. Barber, D. L., Wherry, E. J. & Ahmed, R. Rapid in vivo killing by memory CD8 T cells. J. Immunol. 171, 27–31 (2003).

    CAS  PubMed  Google Scholar 

  92. Byers, A. M., Kemball, C. C., Moser, J. M. & Lukacher, A. E. Rapid in vivo CTL activity by polyoma virus-specific effector and memory CD8+ T cells. J. Immunol. 171, 17–21 (2003).

    CAS  PubMed  Google Scholar 

  93. Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity. Microbiol. Rev. 53, 210–230 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Finlay, B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Krakauer, D. C. & Nowak, M. T-cell induced pathogenesis in HIV: bystander effects and latent infection. Proc. R. Soc. Lond. B 266, 1069–1075 (1999). This paper uses models to examine how the magnitude of pathology depends on the interplay between the killing of infected cells by virus and cytotoxic T lymphocytes.

    CAS  Google Scholar 

  96. Ganusov, V. & Antia, R. Pathology during acute infections: contributions of intracellular pathogens and the CTL response. Biol. Lett. (in the press).

  97. Perelson, A. & Macken, C. Kinetics of cell mediated cytotoxicity: stochastic and deterministic multistage models. Math. Biosci. 70, 161–194 (1984).

    Google Scholar 

  98. Perelson, A. S. Modelling viral and immune system dynamics. Nature Rev. Immunol. 2, 28–36 (2002).

    CAS  Google Scholar 

  99. Jelley-Gibbs, D. M., Lepak, N. M., Yen, M. & Swain, S. L. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J. Immunol. 165, 5017–5026 (2000).

    CAS  PubMed  Google Scholar 

  100. Zand, M. S., Briggs, B. J., Bose, A. & Vo, T. Discrete event modeling of CD4+ memory T cell generation. J. Immunol. 173, 3763–3772 (2004).

    CAS  PubMed  Google Scholar 

  101. Whitmire, J. K., Asano, M. S., Murali-Krishna, K., Suresh, M. & Ahmed, R. Long-term CD4 TH1 and TH2 memory following acute lymphocytic choriomeningitis virus infection. J. Virol. 72, 8281–8288 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Varga, S., Selin, L. & Welsh, R. Independent regulation of lymphocytic choriomeningitis virus-specific T cell memory pools: relative stability of CD4 memory under conditions of CD8 memory T cell loss. J. Immunol. 166, 1554–1561 (2001).

    CAS  PubMed  Google Scholar 

  103. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  104. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    CAS  Google Scholar 

  105. Oprea, M. & Perelson, A. Exploring the mechanisms of primary antibody responses to T cell-dependent antigens. J. Theor. Biol. 181, 215–236 (1996).

    CAS  PubMed  Google Scholar 

  106. Kesmir, C. & De Boer, R. J. A mathematical model on germinal center kinetics and termination. J. Immunol. 163, 2463–2469 (1999).

    CAS  PubMed  Google Scholar 

  107. Kepler, T. B. & Perelson, A. S. Somatic hypermutation in B cells: an optimal control treatment. J. Theor. Biol. 164, 37–64 (1993).

    CAS  PubMed  Google Scholar 

  108. Kepler, T. B. & Perelson, A. S. Modeling and optimization of populations subject to time-dependent mutation. Proc. Natl Acad. Sci. USA 92, 8219–8223 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kesmir, C. & De Boer, R. J. A spatial model of germinal center reactions: cellular adhesion based sorting of B cells results in efficient affinity maturation. J. Theor. Biol. 222, 9–22 (2003).

    CAS  PubMed  Google Scholar 

  110. Sawyer, W. The persistence of yellow fever immunity. J. Prev. Med. 5, 413–428 (1931).

    Google Scholar 

  111. Paul, J. R., Riordan, J. T. & Melnick, J. L. Antibodies to three different antigenic types of poliomyelitis virus in sera from North Alaskan Eskimos. Am. J. Hyg. 54, 275–285 (1951).

    CAS  PubMed  Google Scholar 

  112. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    CAS  PubMed  Google Scholar 

  113. Slifka, M. K. Immunological memory to viral infection. Curr. Opin. Immunol. 16, 443–450 (2004).

    CAS  PubMed  Google Scholar 

  114. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    CAS  PubMed  Google Scholar 

  115. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    CAS  PubMed  Google Scholar 

  116. Wiegel, F. W. & Perelson, A. S. Some scaling principles for the immune system. Immunol. Cell Biol. 82, 127–131 (2004).

    PubMed  Google Scholar 

  117. Grossman, Z., Min, B., Meier-Schellersheim, M. & Paul, W. E. Concomitant regulation of T-cell activation and homeostasis. Nature Rev. Immunol. 4, 387–395 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Handel for helpful comments. R. Antia and R. Ahmed are supported by the National Institutes of Health (United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustom Antia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CD4

CD8

IL-2

IL-7

IL-15

Infectious Disease Information

LCMV

Glossary

BURNET'S THEORY OF CLONAL SELECTION

This theory states that each lymphocyte expresses antigen receptors of a single type and that antigen selects for the proliferation of clones that express receptors capable of binding the antigen.

IMMUNODOMINANCE

The result of antigen(s) or epitopes within a complex mixture (such as a whole virus) being preferentially recognized or reacted against during an immune response.

BROMODEOXYURIDINE

(5-Bromo-2-deoxyuridine, BrdU). A thymidine analogue that is incorporated into DNA on replication, allowing tracking of cells that have divided.

ORDINARY DIFFERENTIAL EQUATION

A differential equation that involves ordinary derivatives of one or more dependent variables with respect to a single independent variable. For example, dX/dt = rX describes the exponential growth of a population of cells, X (the dependent variable), as a function of time, t (the independent variable).

CFSE

(5,6-Carboxyfluorescein diacetate succinimidyl ester). A membrane-permeable dye that covalently attaches to free amines of cytoplasmic proteins vitro. After cell division, the concentration of the label halves with each division, allowing eight to ten successive divisions to be tracked by flow cytometry.

BEST FIT

A procedure that estimates the parameters in a model by minimizing the differences between the predictions of the model and experimental data.

BYSTANDER STIMULATION

The activation and proliferation of cells after exposure to a pathogen in a manner that is independent of their antigenic specificity.

CROSSREACTIVE STIMULATION

The activation and oliferation of (antigen-specific) cells that previously clonally expanded in response to an unrelated antigen or pathogen.

HOMEOSTATIC REGULATION

The regulation of the total number of cells of a given type, such as CD8+ memory T cells.

TELOMERES

Regions of highly repetitive DNA at the end of linear eukaryotic chromosomes. They protect the ends of the chromosome from shortening on replication.

AFFINITY MATURATION

The increase in the average affinity of an immune response for an antigen. This occurs with time or after repeated exposure to an antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antia, R., Ganusov, V. & Ahmed, R. The role of models in understanding CD8+ T-cell memory. Nat Rev Immunol 5, 101–111 (2005). https://doi.org/10.1038/nri1550

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing