RESEARCH HIGHLIGHTS

NATURAL KILLER T CELLS

HIGHLIGHT ADVISORS

CEZMI AKDIS

SWISS INSTITUTE OF ALLERGY AND ASTHMA RESEARCH, SWITZERLAND

BRUCE BEUTLER

SCRIPPS RESEARCH INSTITUTE, USA

PETER CRESSWELL YALE UNIVERSITY, USA

JAMES DI SANTO PASTEUR INSTITUTE, FRANCE

GARY KORETZKY UNIVERSITY OF

PENNSYLVANIA, USA

CHARLES MACKAY GARVAN INSTITUTE OF MEDICAL RESEARCH, AUSTRALIA

CORNELIS J. M. MELIEF

LEIDEN UNIVERSITY MEDICAL CENTRE, THE NETHERLANDS

MICHEL NUSSENZWEIG

THE ROCKEFELLER UNIVERSITY, USA

ALAN SHER

NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASE, USA

ANDREAS STRASSER

THE WALTER AND ELIZA HALL INSTITUTE, AUSTRALIA

MEGAN SYKES

HARVARD MEDICAL SCHOOL, USA

ERIC VIVIER

CENTRE D'IMMUNOLOGIE DE MARSEILLE-LUMINY, FRANCE

MATTHIAS VON HERRATH

LA JOLLA INSTITUTE FOR ALLERGY AND IMMUNOLOGY, USA.

New lipid ligand nourishes NKT-cell responses

Most natural killer T (NKT) cells express a semi-invariant T-cell receptor (TCR) α -chain (V α 14–J α 18 in mice and the homologous V α 24– J α 18 in humans). These NKT cells recognize endogenous lipid antigens presented by the MHC-class-I-like molecule CD1d; however, the identity of the natural CD1d-bound ligands has not been established. But now, a paper published in *Science* shows that a lysosomal glycosphingolipid, isoglobotrihexosylceramide (iGb3), stimulates both human V α 24⁺ and mouse V α 14⁺ NKT cells.

Previous studies have shown that presentation of natural CD1d-bound ligands requires lysosomal trafficking of CD1d molecules and several lysosomal proteins, including proteases and lipid-transfer proteins, leading to the hypothesis that the endogenous ligands might be lysosomal glycosphingolipids. So, Zhou et al. analysed mice deficient in the B subunit of the lysosomal-glycosphingolipid-degrading enzyme β -hexosaminidase (HEXB) and found that the number of $V\alpha 14^+$ NKT cells was decreased by 95%. In addition, thymocytes that were isolated from HEXB-deficient mice could not stimulate interleukin-2 (IL-2) production by an autoreactive CD1d-restricted Va14+ NKT-cell hybridoma, indicating that HEXBdeficient cells have a specific defect in generating lysosomal Va14+ NKT-cell ligands.

HEXB-dependent enzymes remove the β -linked *N*-acetylgalactosamine (GalNAc) residues from several distinct types of glycosphingolipid, such as isogloboglycosphingolipids. However, Va24+ NKT cells present in freshly isolated peripheral-blood mononuclear cells (PBMCs) clonally expanded only in the presence of one of these glycosphingolipid types, iGb3. CD1d presentation of iGb3 also stimulated interferon-y and IL-4 production by $V\alpha 24^+$ NKT cells and IL-2 production by the Vα14⁺ NKT-cell hybridoma. Furthermore, although HEXB-deficient bone-marrow-derived dendritic cells (BMDCs) presented iGb3 to the Vα14⁺ NKT-cell hybridoma as efficiently as wild-type BMDCs, they could not present the iGb3 precursor iGb4, indicating that iGb4 processing by HEXB-dependent enzymes is required for iGb3 recognition by the Vα14⁺ NKT cells.

Further evidence that iGb3 is a ligand for $V\alpha 14^+$ and $V\alpha 24^+$ NKT cells was provided by the observation that isolectin B4 (IB4) — a lectin isolated from *Griffonia simplicifolia* that binds the terminal Gal $\alpha 1,3$ -Gal of iGb3 — impaired iGb3 stimulation of $V\alpha 24^+$ NKT cells but not stimulation of $V\alpha 24^+$ NKT cells by an unrelated ligand, α -galactosylceramide. IB4 also inhibited $V\alpha 24^+$ NKT-cell recognition of natural CD1d ligands presented by PBMC-derived DCs.

This study defines iGb3 as an agonist ligand for $V\alpha 14^+$ and $V\alpha 24^+$ NKT cells, and the authors suggest that this might be the principal endogenous ligand for these cells that is expressed in non-diseased

peripheral tissues, as well as the ligand responsible for $V\alpha 14^+$ NKT-cell development. However, isogloboglycosphingolipids have not yet been biochemically identified in humans or mice, so further studies are required to confirm that iGb3 is indeed the principal self-antigen of $V\alpha 14^+$ and $V\alpha 24^+$ NKT cells.

Karen Honey

ORIGINAL RESEARCH PAPER Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science **306**, 1786–1789 (2004).