Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunogenetics of asthma and eczema: a new focus on the epithelium

Key Points

  • Asthma is an inflammatory disease of the small airways of the lung. It shares some immunological features with atopic dermatitis (AD), the most common skin disease of childhood. Asthma and AD have now reached epidemic proportions.

  • Immunoglobulin E (IgE)-mediated sensitivity to allergens and the maintenance of IgE responses through a T helper 2 (TH2)-cell bias is currently considered to be central to the initiation of asthma and AD. However, this view has several inconsistencies with epidemiological observations of the diseases.

  • Asthma prevalence has been linked to progressive westernization of lifestyle, and a protective effect against asthma of microbial exposure in early childhood has been observed in many studies. The challenge is to explain this protective effect at the molecular level and so prevent disease.

  • The basic causes of asthma and AD are still unclear and it is helpful to understand their genetic basis. This review describes what is known about the genetics of asthma and AD, and then suggests potential mechanisms to explain the interaction between genes and the environment in disease pathogenesis.

  • Genome screens for asthma and AD have shown that the two diseases show only partial genetic overlap. This indicates that susceptibility to asthma and AD are mediated through different genes, rather than through a common atopic background. The AD loci are however closely coincident with psoriasis susceptibility loci, suggesting that particular genes or families of genes have general effects on immune reactions in the skin.

  • Genetic mapping studies have now identified several genes underlying asthma and AD. Many of these are expressed in the terminally differentiating epithelium, as are genes for psoriasis and inflammatory bowel disease. The expression of these genes in the skin or mucosa indicates that understanding innate mechanisms of epithelial defence is essential to the treatment and prevention of asthma and AD.

  • Mechanisms of epithelial immunity include barrier defences, danger recognition and the call for help. These mechanisms are reviewed because of their impact on understanding asthma and AD.

  • A focus on the epithelium encourages investigation of the mechanisms by which allergens damage the epithelium, the danger signals and pattern-recognition receptors that they activate, and the early signalling pathways that are used to recruit specific components of the innate and adaptive immune systems.

  • Genetic studies indicate the occurrence of many previously unknown or ignored molecules, such as the S100 proteins from the epidermal differentiation complex, which might be novel targets for the control and suppression of epithelial inflammation.

  • A central mystery of asthma revolves around the protective effect of microbial exposures in childhood. This effect has mainly been investigated in the context of TH1- or TH2-type biased responses, but it might also be explicable by mechanisms confined to epithelial-cell surfaces. It is probable that a full understanding of asthma and AD will also depend on studies that include the commensal bacteria.

Abstract

Asthma and eczema (atopic dermatitis) are the most common chronic diseases of childhood. These diseases are characterized by the production of high levels of immunoglobulin E in response to common allergens. Their development depends on both genetic and environmental factors. Over the past few years, several genes and genetic loci that are associated with increased susceptibility to asthma and atopic dermatitis have been described. Many of these genes are expressed in the mucosa and epidermis, indicating that events at epithelial-cell surfaces might be driving disease processes. This review describes the mechanisms of innate epithelial immunity and the role of microbial factors in providing protection from disease development. Understanding events at the epithelial-cell surface might provide new insights for the development of new treatments for inflammatory epithelial disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical mechanisms of atopy in asthma and atopic dermatitis.
Figure 2: Susceptibility loci identified by genome screens for asthma, atopic dermatitis and other immune disorders.
Figure 3: The distribution of genes causing susceptibility to asthma and atopic dermatitis.
Figure 4: Defence mechanisms in epithelial cells.

Similar content being viewed by others

References

  1. Johansson, S. G. et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 56, 813–824 (2001). This paper describes an overview of the history of atopic disease and its classification, and addresses many of the problems in understanding and classifying the incomplete overlap between atopy, asthma and AD.

    CAS  PubMed  Google Scholar 

  2. von Pirquet, C. Allergie. Münch med Wochenschr 30, 1457–1458 (1906).

    Google Scholar 

  3. Noon, L. Prophylactic innoculation against hay-fever. Lancet i, 1572–1573 (1911).

    Google Scholar 

  4. Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcεRI. Nature 402, B24–B30 (1999).

    CAS  PubMed  Google Scholar 

  5. Kay, A. B. Allergy and allergic diseases. Second of two parts. N. Engl. J. Med. 344, 109–113 (2001).

    CAS  PubMed  Google Scholar 

  6. Kay, A. B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 344, 30–37 (2001). References 5 and 6 give an excellent overview of current understanding of atopic diseases.

    CAS  PubMed  Google Scholar 

  7. Crater, S. E. & Platts-Mills, T. A. Searching for the cause of the increase in asthma. Curr. Opin. Pediatr. 10, 594–599 (1998).

    CAS  PubMed  Google Scholar 

  8. Koenig, J. Air pollution and asthma. J. Allergy Clin. Immunol. 104, 717–722 (1999).

    CAS  PubMed  Google Scholar 

  9. Strachan, D. P. Hay fever, hygiene, and household size. Brit. Med. J. 299, 1259–1260 (1989). This paper is the first to use the term 'hygiene hypothesis'.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. von Mutius, E. et al. Prevalence of asthma and atopy in two areas of West and East Germany. Am. J. Respir. Crit. Care Med. 149, 358–364 (1994). This landmark paper was the first to recognize that the prevalence of atopy is altered by the environment: in this case polluted East Germany contained less atopy than the unpolluted West.

    CAS  PubMed  Google Scholar 

  11. Holt, P. G., Macaubas, C., Stumbles, P. A. & Sly, P. D. The role of allergy in the development of asthma. Nature 402, B12–B17 (1999).

    CAS  PubMed  Google Scholar 

  12. Holt, P. G. A potential vaccine strategy for asthma and allied atopic diseases during early childhood. Lancet 344, 456–458 (1994). This is part of a series of influential papers indicating that the T H 1–T H 2 balance could be altered by the neonatal environment.

    CAS  PubMed  Google Scholar 

  13. Romagnani, S. The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112, 352–363 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cox, H. E. et al. Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br. J. Dermatol. 138, 182–187 (1998).

    CAS  PubMed  Google Scholar 

  15. Creticos, P. S. et al. Ragweed immunotherapy in adult asthma. N. Engl. J. Med. 334, 501–506 (1996).

    CAS  PubMed  Google Scholar 

  16. Adkinson, N. F. Jr et al. A controlled trial of immunotherapy for asthma in allergic children. N. Engl. J. Med. 336, 324–331 (1997).

    CAS  PubMed  Google Scholar 

  17. Barnes, P. J. Is immunotherapy for asthma worthwhile? N. Engl. J. Med. 334, 531–532 (1996).

    CAS  PubMed  Google Scholar 

  18. Holgate, S. T. et al. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin. Exp. Allergy 34, 632–638 (2004).

    CAS  PubMed  Google Scholar 

  19. Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet. 13, R1–R7 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Duffy, D. L., Martin, N. G., Battistutta, D., Hopper, J. L. & Mathews, J. D. Genetics of asthma and hay fever in Australian twins. Am. Rev. Respir. Dis. 142, 1351–1358 (1990).

    CAS  PubMed  Google Scholar 

  21. Larsen, F. S., Holm, N. V. & Henningsen, K. Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J. Am. Acad. Dermatol. 15, 487–494 (1986).

    CAS  PubMed  Google Scholar 

  22. Schultz Larsen, F. Atopic dermatitis: a genetic-epidemiologic study in a population-based twin sample. J. Am. Acad. Dermatol. 28, 719–723 (1993).

    CAS  PubMed  Google Scholar 

  23. Cookson, W. A new gene for asthma: would you ADAM and Eve it? Trends Genet. 19, 169–172 (2003).

    CAS  PubMed  Google Scholar 

  24. Wills-Karp, M. & Ewart, S. L. Time to draw breath: asthma-susceptibility genes are identified. Nature Rev. Genet. 5, 376–387 (2004). This paper contains a comprehensive review of the current state of asthma genetics, including reference to murine models of disease.

    CAS  PubMed  Google Scholar 

  25. Becker, K. et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc. Natl Acad. Sci. USA 95, 9979–9984 (1998). This paper was the first to observe clustering of inflammatory disease loci in a limited number of chromosomal segments.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cookson, W. Genetics and genomics of asthma and allergic diseases. Immunol. Rev. 190, 195–206 (2002).

    CAS  PubMed  Google Scholar 

  27. Bowcock, A. M. & Cookson, W. O. The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Hum. Mol. Genet. 13, R43–55 (2004). This paper contains a review of the genetics of AD.

    CAS  PubMed  Google Scholar 

  28. Tosh, K. et al. A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population. J. Infect. Dis. 186, 1190–1193 (2002).

    CAS  PubMed  Google Scholar 

  29. Judge, M. R., Morgan, G. & Harper, J. I. A clinical and immunological study of Netherton's syndrome. Br. J. Dermatol. 131, 615–621 (1994).

    CAS  PubMed  Google Scholar 

  30. Bitoun, E. et al. Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J. Invest. Dermatol. 118, 352–361 (2002).

    CAS  PubMed  Google Scholar 

  31. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genet. 25, 141–142 (2000).

    CAS  PubMed  Google Scholar 

  32. Mägert, H. J. et al. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J. Biol. Chem. 274, 21499–21502 (1999).

    PubMed  Google Scholar 

  33. Walley, A. J. et al. Gene polymorphism in Netherton and common atopic disease. Nature Genet. 29, 175–178 (2001).

    CAS  PubMed  Google Scholar 

  34. Nishio, Y. et al. Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun. 4, 515–517 (2003).

    CAS  PubMed  Google Scholar 

  35. Kato, A. et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br. J. Dermatol. 148, 665–669 (2003).

    CAS  PubMed  Google Scholar 

  36. Kabesch, M., Carr, D., Weiland, S. K. & von Mutius, E. Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clin. Exp. Allergy 34, 340–345 (2004).

    CAS  PubMed  Google Scholar 

  37. Komatsu, N. et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J. Invest. Dermatol. 118, 436–443 (2002).

    CAS  PubMed  Google Scholar 

  38. Leyden, J. J., Marples, R. R. & Kligman, A. M. Staphylococcus aureus in the lesions of atopic dermatitis. Br. J. Dermatol. 90, 525–530 (1974).

    CAS  PubMed  Google Scholar 

  39. Christophers, E. & Henseler, T. Contrasting disease patterns in psoriasis and atopic dermatitis. Arch. Dermatol. Res. 279 (Suppl.), S48–S51 (1987).

    PubMed  Google Scholar 

  40. Miedzobrodzki, J., Kaszycki, P., Bialecka, A. & Kasprowicz, A. Proteolytic activity of Staphylococcus aureus strains isolated from the colonized skin of patients with acute-phase atopic dermatitis. Eur. J. Clin. Microbiol. Infect. Dis. 21, 269–276 (2002). This paper shows that the S. aureus that are associated with AD have high levels of protease activity.

    CAS  PubMed  Google Scholar 

  41. Winton, H. L. et al. Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Br. J. Pharmacol. 124, 1048–1059 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wachter, A. M. & Lezdey, J. Treatment of atopic dermatitis with α1-proteinase inhibitor. Ann. Allergy 69, 407–414 (1992).

    CAS  PubMed  Google Scholar 

  43. Cookson, W. O. et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nature Genet. 27, 372–373 (2001).

    CAS  PubMed  Google Scholar 

  44. Capon, F. et al. Searching for psoriasis susceptibility genes in Italy: genome scan and evidence for a new locus on chromosome 1. J. Invest. Dermatol. 112, 32–35 (1999).

    CAS  PubMed  Google Scholar 

  45. Mischke, D., Korge, B. P., Marenholz, I., Volz, A. & Ziegler, A. Genes encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex ('epidermal differentiation complex') on human chromosome 1q21. J. Invest. Dermatol. 106, 989–992 (1996).

    CAS  PubMed  Google Scholar 

  46. Nomura, I. et al. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: a gene microarray analysis. J. Allergy Clin. Immunol. 112, 1195–1202 (2003).

    CAS  PubMed  Google Scholar 

  47. Bowcock, A. M. et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum. Mol. Genet. 10, 1793–1805 (2001).

    CAS  PubMed  Google Scholar 

  48. Zhou, X. et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol. Genomics 13, 69–78 (2003).

    CAS  PubMed  Google Scholar 

  49. Marshall, D., Hardman, M. J., Nield, K. M. & Byrne, C. Differentially expressed late constituents of the epidermal cornified envelope. Proc. Natl Acad. Sci. USA 98, 13031–13036 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lohman, F. et al. Expression of the SPRR cornification genes is differentially affected by carcinogenic transformation. Exp. Cell Res. 231, 141–148 (1997).

    CAS  PubMed  Google Scholar 

  51. Hardas, B. et al. Assignment of psoriasin to human chromosomal band 1q21: coordinate overexpression of clustered genes in psoriasis. J. Invest. Dermatol. 106, 753–758 (1996).

    CAS  PubMed  Google Scholar 

  52. Christiano, A. M. Frontiers in keratodermas: pushing the envelope. Trends Genet. 13, 227–233 (1997).

    CAS  PubMed  Google Scholar 

  53. Donato, R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33, 637–668 (2001).

    CAS  PubMed  Google Scholar 

  54. Allen, M. et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genet. 35, 258–263 (2003).

    CAS  PubMed  Google Scholar 

  55. Laitinen, T. et al. Characterization of a common susceptibility locus for asthma-related traits. Science 304, 300–304 (2004).

    CAS  PubMed  Google Scholar 

  56. Zhang, Y. et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nature Genet. 34, 181–186 (2003).

    CAS  PubMed  Google Scholar 

  57. Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).

    CAS  PubMed  Google Scholar 

  58. Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Med. 8, 885–889 (2002).

    CAS  PubMed  Google Scholar 

  59. Ober, C. et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am. J. Hum. Genet. 66, 517–526 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Donnadieu, E. et al. Competing functions encoded in the allergy-associated FcεRIβ gene. Immunity 18, 665–674 (2003).

    CAS  PubMed  Google Scholar 

  61. Traherne, J. A. et al. LD mapping of maternally and non-maternally derived alleles and atopy in FcεRI-β. Hum. Mol. Genet. 12, 2577–2585 (2003).

    CAS  PubMed  Google Scholar 

  62. Oguma, T. et al. Role of prostanoid DP receptor variants in susceptibility to asthma. N. Engl. J. Med. 351, 1752–1763 (2004).

    CAS  PubMed  Google Scholar 

  63. Baldini, M. et al. A polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol. 20, 976–983 (1999).

    CAS  PubMed  Google Scholar 

  64. Eder, W. et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J. Allergy Clin. Immunol. 113, 482–488 (2004).

    CAS  PubMed  Google Scholar 

  65. Kabesch, M. et al. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J. Allergy Clin. Immunol. 111, 813–817 (2003).

    CAS  PubMed  Google Scholar 

  66. McIntire, J. J. et al. Immunology: hepatitis A virus link to atopic disease. Nature 425, 576 (2003).

    CAS  PubMed  Google Scholar 

  67. Raby, B. A. et al. Polymorphisms in toll-like receptor 4 are not associated with asthma or atopy-related phenotypes. Am. J. Respir. Crit. Care Med. 166, 1449–1456 (2002).

    PubMed  Google Scholar 

  68. Noguchi, E. et al. An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. Clin. Exp. Allergy 34, 177–183 (2004).

    CAS  PubMed  Google Scholar 

  69. Lazarus, R. et al. TOLL-like receptor 10 genetic variation is associated with asthma in two independent samples. Am. J. Respir. Crit. Care Med. 170, 594–600 (2004).

    PubMed  Google Scholar 

  70. Moffatt, M. F. & Cookson, W. O. Tumour necrosis factor haplotypes and asthma. Hum. Mol. Genet. 6, 551–554 (1997).

    CAS  PubMed  Google Scholar 

  71. Pulleyn, L. J., Newton, R., Adcock, I. M. & Barnes, P. J. TGFβ1 allele association with asthma severity. Hum. Genet. 109, 623–627 (2001).

    CAS  PubMed  Google Scholar 

  72. Hewett, D. et al. Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics 79, 305–314 (2002).

    CAS  PubMed  Google Scholar 

  73. Tiilikainen, A., Lassus, A., Karvonen, J., Vartiainen, P. & Julin, M. Psoriasis and HLA-Cw6. Brit. J. Dermatol. 102, 179–184 (1980).

    CAS  Google Scholar 

  74. Ahnini, R. T. et al. Novel genetic association between the corneodesmosin (MHC S) gene and susceptibility to psoriasis. Hum. Mol. Genet. 8, 1135–1140 (1999).

    CAS  Google Scholar 

  75. Asumalahti, K. et al. A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum. Mol. Genet. 9, 1533–1542 (2000).

    CAS  PubMed  Google Scholar 

  76. Allen, M. et al. Corneodesmosin expression in psoriasis vulgaris differs from normal skin and other inflammatory skin disorders. Lab. Invest. 81, 969–976 (2001).

    CAS  PubMed  Google Scholar 

  77. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  78. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  79. Stoll, M. et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet. 36, 476–480 (2004).

    CAS  PubMed  Google Scholar 

  80. Peltekova, V. D. et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genet. 36, 471–475 (2004).

    CAS  PubMed  Google Scholar 

  81. Lala, S. et al. Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125, 47–57 (2003).

    CAS  PubMed  Google Scholar 

  82. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993–1000 (2003).

    CAS  PubMed  Google Scholar 

  83. Kamada, F. et al. Association of the hCLCA1 gene with childhood and adult asthma. Genes Immun. (2004).

  84. Hegab, A. E. et al. CLCA1 gene polymorphisms in chronic obstructive pulmonary disease. J. Med. Genet. 41, e27 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tomic-Canic, M., Komine, M., Freedberg, I. M. & Blumenberg, M. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J. Dermatol. Sci. 17, 167–181 (1998).

    CAS  PubMed  Google Scholar 

  86. Freedberg, I., Tomic-Canic, M., Komine, M. & Blumenberg, M. Keratins and the keratinocyte activation cycle. J. Invest. Dermatol. 116, 633–640 (2001).

    CAS  PubMed  Google Scholar 

  87. Song, P. I. et al. Human keratinocytes express functional CD14 and Toll-like receptor 4. J. Invest. Dermatol. 119, 424–432 (2002).

    CAS  PubMed  Google Scholar 

  88. Muir, A. et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 30, 777–783 (2004).

    CAS  PubMed  Google Scholar 

  89. Ichikawa, J. K. et al. Interaction of pseudomonas aeruginosa with epithelial cells: identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc. Natl Acad. Sci. USA 97, 9659–9664 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Belcher, C. E. et al. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc. Natl Acad. Sci. USA 97, 13847–13852 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Clauss, A., Lilja, H. & Lundwall, A. A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem. J. 368, 233–242 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Simpson, A. J., Maxwell, A. I., Govan, J. R., Haslett, C. & Sallenave, J. M. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 452, 309–313 (1999).

    CAS  PubMed  Google Scholar 

  93. Singh, P. K., Tack, B. F., McCray, P. B. Jr & Welsh, M. J. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. Lung. Cell. Mol. Physiol. 279, L799–805 (2000).

    CAS  PubMed  Google Scholar 

  94. Tomee, J. F., Koeter, G. H., Hiemstra, P. S. & Kauffman, H. F. Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53, 114–116 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bals, R. et al. Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 102, 874–880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bals, R., Wang, X., Zasloff, M. & Wilson, J. M. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl Acad. Sci. USA 95, 9541–9546 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Huttner, K. M. & Bevins, C. L. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res. 45, 785–794 (1999).

    CAS  PubMed  Google Scholar 

  98. Brogan, T. D., Ryley, H. C., Neale, L. & Yassa, J. Soluble proteins of bronchopulmonary secretions from patients with cystic fibrosis, asthma, and bronchitis. Thorax 30, 72–79 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Benson, M. et al. DNA microarrays to study gene expression in allergic airways. Clin. Exp. Allergy 32, 301–308 (2002).

    CAS  PubMed  Google Scholar 

  100. Kaufman, H. S. & Hobbs, J. R. Immunoglobulin deficiencies in an atopic population. Lancet 2, 1061–1063 (1970).

    CAS  PubMed  Google Scholar 

  101. Ludviksson, B. R., Eiriksson, T. H., Ardal, B., Sigfusson, A. & Valdimarsson, H. Correlation between serum immunoglobulin A concentrations and allergic manifestations in infants. J. Pediatr. 121, 23–27 (1992).

    CAS  PubMed  Google Scholar 

  102. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–55 (1999).

    CAS  PubMed  Google Scholar 

  103. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002). Matzinger explains that danger signals are essential for the initiation of an immune response.

    CAS  PubMed  Google Scholar 

  104. Palaniyar, N., Nadesalingam, J. & Reid, K. B. Pulmonary innate immune proteins and receptors that interact with gram-positive bacterial ligands. Immunobiology 205, 575–594 (2002).

    CAS  PubMed  Google Scholar 

  105. Kopp, E. & Medzhitov, R. Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 15, 396–401 (2003).

    CAS  PubMed  Google Scholar 

  106. Inohara, N. & Nunez, G. NODS: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 3, 371–382 (2003).

    CAS  Google Scholar 

  107. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    CAS  PubMed  Google Scholar 

  108. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol. 4, 469–478 (2004).

    CAS  Google Scholar 

  109. Ring, P. C. et al. The 18-kDa form of cat allergen Felis domesticus 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity. Clin. Exp. Allergy 30, 1085–1096 (2000).

    CAS  PubMed  Google Scholar 

  110. Bufe, A., Schramm, G., Keown, M. B., Schlaak, M. & Becker, W. M. Major allergen Phl p Vb in timothy grass is a novel pollen RNase. FEBS Lett. 363, 6–12 (1995).

    CAS  PubMed  Google Scholar 

  111. Tjabringa, G. S. et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J. Immunol. 171, 6690–6696 (2003).

    CAS  PubMed  Google Scholar 

  112. Yang, D., Biragyn, A., Kwak, L. W. & Oppenheim, J. J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–296 (2002).

    CAS  PubMed  Google Scholar 

  113. Yoshio, H. et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr. Res. 53, 211–216 (2003).

    CAS  PubMed  Google Scholar 

  114. Brandtzaeg, P. et al. The leucocyte protein L1 (calprotectin): a putative nonspecific defence factor at epithelial surfaces. Adv. Exp. Med. Biol. 371A, 201–206 (1995).

    CAS  PubMed  Google Scholar 

  115. Steinbakk, M. et al. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 336, 763–765 (1990).

    CAS  PubMed  Google Scholar 

  116. Miyasaki, K. T., Bodeau, A. L., Murthy, A. R. & Lehrer, R. I. In vitro antimicrobial activity of the human neutrophil cytosolic S-100 protein complex, calprotectin, against Capnocytophaga sputigena. J. Dent. Res. 72, 517–523 (1993).

    CAS  PubMed  Google Scholar 

  117. Gottsch, J. D., Eisinger, S. W., Liu, S. H. & Scott, A. L. Calgranulin C has filariacidal and filariastatic activity. Infect. Immun. 67, 6631–6636 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455 (2003). A review highlighting that many chemokines have antimicrobial activity.

    CAS  PubMed  Google Scholar 

  119. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253–256 (2001). A good review of how specific pathogen recognition alters the nature of the immune response.

    CAS  PubMed  Google Scholar 

  120. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (TH2) responses and require obligatory cytokine signals for induction of TH1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mazzoni, A. & Segal, D. M. Controlling the Toll road to dendritic cell polarization. J. Leukoc. Biol. 75, 721–730 (2004).

    CAS  PubMed  Google Scholar 

  122. Rook, G. A. & Stanford, J. L. Give us this day our daily germs. Immunol. Today 19, 113–116 (1998).

    CAS  PubMed  Google Scholar 

  123. Bjorksten, B. Effects of intestinal microflora and the environment on the development of asthma and allergy. Springer Semin. Immunopathol. 25, 257–270 (2004).

    PubMed  Google Scholar 

  124. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    CAS  PubMed  Google Scholar 

  125. Sepp, E. et al. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr. 86, 956–961 (1997).

    CAS  PubMed  Google Scholar 

  126. Bjorksten, B., Naaber, P., Sepp, E. & Mikelsaar, M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin. Exp. Allergy 29, 342–346 (1999).

    CAS  PubMed  Google Scholar 

  127. Svanes, C., Jarvis, D., Chinn, S. & Burney, P. Childhood environment and adult atopy: results from the European Community Respiratory Health Survey. J. Allergy Clin. Immunol. 103, 415–420 (1999).

    CAS  PubMed  Google Scholar 

  128. Hesselmar, B., Aberg, N., Aberg, B., Eriksson, B. & Bjorksten, B. Does early exposure to cat or dog protect against later allergy development? Clin. Exp. Allergy 29, 611–617 (1999).

    CAS  PubMed  Google Scholar 

  129. von Mutius, E. et al. Skin test reactivity and number of siblings. BMJ 308, 692–695 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Riedler, J. et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358, 1129–1133 (2001). This paper describes the strongly protective effect of farm environments and non-pasteurized milk on the prevalence of asthma in Alpine regions.

    CAS  PubMed  Google Scholar 

  131. Wickens, K. et al. Farm residence and exposures and the risk of allergic diseases in New Zealand children. Allergy 57, 1171–1179 (2002).

    CAS  PubMed  Google Scholar 

  132. Komada, T. et al. Novel specific chemtactic receptor for S100L protein on guinea pig eosinophils. Biochem. Biophys. Res. Commun. 220, 871–874 (1996).

    CAS  PubMed  Google Scholar 

  133. Jinquan, T. et al. Psoriasin: a novel chemotactic protein. J. Invest. Dermatol. 107, 5–10 (1996).

    CAS  PubMed  Google Scholar 

  134. Passey, R. J., Xu, K., Hume, D. A. & Geczy, C. L. S100A8: emerging functions and regulation. J. Leukoc. Biol. 66, 549–556 (1999).

    CAS  PubMed  Google Scholar 

  135. Lackmann, M. et al. Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J. Immunol. 150, 2981–2991 (1993).

    CAS  PubMed  Google Scholar 

  136. Cornish, C. J. et al. S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J. Cell. Physiol. 166, 427–437 (1996).

    CAS  PubMed  Google Scholar 

  137. Eue, I., Pietz, B., Storck, J., Klempt, M. & Sorg, C. Transendothelial migration of 27E10+ human monocytes. Int. Immunol. 12, 1593–1604 (2000).

    CAS  PubMed  Google Scholar 

  138. Yui, S., Mikami, M. & Yamazaki, M. Purification and characterization of the cytotoxic factor in rat peritoneal exudate cells: its identification as the calcium binding protein complex, calprotectin. J. Leukoc. Biol. 58, 307–316 (1995).

    CAS  PubMed  Google Scholar 

  139. Aguiar-Passeti, T., Postol, E., Sorg, C. & Mariano, M. Epithelioid cells from foreign-body granuloma selectively express the calcium-binding protein MRP-14, a novel down-regulatory molecule of macrophage activation. J. Leukoc. Biol. 62, 852–858 (1997).

    CAS  PubMed  Google Scholar 

  140. Brun, J. G., Ulvestad, E., Fagerhol, M. K. & Jonsson, R. Effects of human calprotectin (L1) on in vitro immunoglobulin synthesis. Scand. J. Immunol. 40, 675–680 (1994).

    CAS  PubMed  Google Scholar 

  141. Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ADAM33

CD14

CLCA1

DLG5

DPP10

FCERI

IL-4

IL-5

IL-9

IL-13

NOD2

PHF11

PSORS1

S100A12

SLC12A8

SLC22A4

SLC22A5

SLC9A3R1

SPINK5

SPRR2C

TGFB

TIM1

TLR2

TLR10

OMIM

ankylosing spondylitis

multiple sclerosis

Netherton's disease

rheumatoid arthritis

type 1 diabetes

Glossary

ASTHMA

Intermittent inflammation of the airways of the lung and chronic disease can lead to airway scarring and irreversible limitation of airflow.

ATOPIC DERMATITIS

(eczema). A scaly, itchy rash that typically occurs in the flexures of the elbows and knees, but can also be found anywhere on the body.

ATOPY

(meaning 'strange disease'). A term invented to describe the familial syndrome of asthma and hay fever and their association with positive skin-prick tests.

ALLERGENS

Common inhaled proteins that induce allergic responses. Typical allergen sources include house-dust mite, grass pollens and animal danders (droppings from skin and fur).

WHEAL-AND-FLARE RESPONSE

The acute response of the skin to an allergen in a skin-prick test. The wheal is a swelling of the epidermis around the site of the prick (usually several millimetres in diameter). The flare is a reddening of the skin over a wider area that is induced by neuronal mechanisms.

SKIN-PRICK TEST

The introduction of minute amounts of allergen into the epidermis by a prick or scratch induces mast-cell degranulation if allergen-specific IgE is present. A wheal and flare is visible if degranulation takes place, and its size is used as a measure of an individual's allergen sensitivity.

ANAPHYLAXIS

The generalized release of histamine and other inflammatory mediators following systemic induction of mast-cell degranulation by allergen. Anaphylaxis can cause bronchospasm, cardiovascular collapse and death.

PSORIASIS

The most common skin disease of adults, typically affecting the extensor surfaces of elbows and knees but can also be generalized. It is not associated with atopy.

GENOME SCREEN

The systematic localization of chromosomal regions that are co-inherited with disease. Typically, a panel of markers covering all the chromosomes are genotyped in multiple families containing individuals with the disease.

GENETIC LINKAGE

The identification of a chromosomal region that is co-inherited with disease in families.

POSITIONAL CLONING

The process of systematically identifying disease genes from the study of families. Positional cloning begins with genetic linkage regions, which can cover 20–30 million base pairs of DNA and contain 300 genes. The region is refined to 5–10 genes by genetic 'fine mapping', and the remaining genes are studied individually to determine whether they contribute to disease.

CORNIFIED ENVELOPE

The cell walls of fully differentiated keratinocytes, which form the stratum corneum.

CANDIDATE GENES

Known genes that are investigated for a role in disease by the comparison of polymorphisms in patients and controls.

STRATUM CORNEUM

The mechanically and chemically resistant outermost layer of the skin, which is made up of a complex mixture of lipids and proteins.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

A disease of irreversible airway constriction. It usually results from a combination of cigarette smoking and asthma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 4, 978–988 (2004). https://doi.org/10.1038/nri1500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing