Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T-cell trafficking in asthma: lipid mediators grease the way

Key Points

  • Although it is firmly established that T helper 2 (TH2) cells are central to the pathogenesis of asthma, the molecular mechanisms that control TH2-cell trafficking to the lung in asthma are unknown.

  • Lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2) are not stored and released; instead, when cells are activated, these mediators are synthesized de novo from arachidonic acid by enzymes of the lipoxygenase and cyclooxygenase pathways respectively.

  • Molecular identification of the receptors for LTB4 and PGD2 has led to the discovery that two of these receptors, BLT1 and DP2 (also known as CRTH2) are highly expressed by specific T-cell subsets and are functional on these cells.

  • Classically, LTB4 has been thought to contribute to the pathogenesis of asthma through the recruitment and activation of neutrophils and eosinophils, whereas PGD2 has been thought to contribute to oedema formation, mucus production and bronchoconstriction.

  • Generation of BLT1-deficient mice has revealed an unexpected role for LTB4 in T-cell trafficking early in allergic pulmonary inflammation. LTB4, which is probably produced in the airways of immunized animals following mast-cell and/or alveolar macrophage activation by aerosolized allergen, seems to be the main chemoattractant that directs effector T cells to the airways immediately after aeroallergen challenge.

  • Generation of DP1-deficient mice has also revealed an unexpected role for PGD2 in T-cell trafficking early in allergic pulmonary inflammation. PGD2 is also produced in the airways following mast-cell and/or alveolar macrophage activation, and it induces expression of the chemokine CC-chemokine ligand 22 (also known as MDC), which augments TH2-cell recruitment to the airways.

  • Experiments using mice that are deficient in STAT6 (signal transducer and activator of transcription 6) indicate that T-cell recruitment during the amplification and/or maintenance of allergic pulmonary inflammation is directed by peptide chemokines. Cytokines produced by TH2 cells that are recruited to the airways during the initiation phase of allergic inflammation activate resident pulmonary cells in a STAT6-dependent manner, to secrete chemokines that attract TH2 cells and eosinophils.

  • We propose that eicosanoids and chemokines cooperate and have non-redundant, sequential roles in directing T cells in asthma: the initial T-cell recruitment to the airways in allergic immune responses is directed by LTB4 and PGD2, whereas the subsequent T-cell recruitment that is required to amplify and/or maintain allergic pulmonary inflammation is directed by chemokines.

Abstract

Recruitment of T cells to the airways is crucial in the pathogenesis of asthma, and it is thought to be mediated mainly by peptide chemokines. By contrast, lipid mediators such as leukotrienes and prostaglandins have classically been thought to contribute to asthma pathogenesis by other mechanisms. However, as we discuss here, the recent molecular identification of leukotriene and prostaglandin receptors, as well as the generation of mice that are genetically deficient in them, has revealed that two of these lipids — leukotriene B4 and prostaglandin D2 — also direct T-cell migration and seem to cooperate with chemokines in a non-redundant, sequential manner to recruit T cells to the airways in asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of LTB4 and PGD2.
Figure 2: T-cell expression of the receptors for LTB4 and PGD2.
Figure 3: Mechanisms of effector T-cell recruitment mediated by LTB4 and BLT1.
Figure 4: Classically described activities of LTB4 and PGD2 that are relevant to asthma.
Figure 5: Three waves of T-cell chemoattractants in asthma: LTB4, PGD2 and chemokines.

Similar content being viewed by others

References

  1. Busse, W. W. & Lemanske, R. F. Jr. Asthma. N. Engl. J. Med. 344, 350–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Peters-Golden, M. & Brock, T. G. Intracellular compartmentalization of leukotriene synthesis: unexpected nuclear secrets. FEBS Lett. 487, 323–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Werz, O. 5-lipoxygenase: cellular biology and molecular pharmacology. Curr. Drug Targets Inflamm. Allergy 1, 23–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Peters-Golden, M. & Brock, T. G. 5-lipoxygenase and FLAP. Prostaglandins Leukot. Essent. Fatty Acids 69, 99–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Fabre, J. E. et al. Transcellular biosynthesis contributes to the production of leukotrienes during inflammatory responses in vivo. J. Clin. Invest. 109, 1373–1380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanaoka, Y. & Urade, Y. Hematopoietic prostaglandin D synthase. Prostaglandins Leukot. Essent. Fatty Acids 69, 163–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Urade, Y. et al. Mast cells contain spleen-type prostaglandin D synthetase. J. Biol. Chem. 265, 371–375 (1990).

    CAS  PubMed  Google Scholar 

  10. Urade, Y., Ujihara, M., Horiguchi, Y., Ikai, K. & Hayaishi, O. The major source of endogenous prostaglandin D2 production is likely antigen-presenting cells. Localization of glutathione-requiring prostaglandin D synthetase in histiocytes, dendritic, and Kupffer cells in various rat tissues. J. Immunol. 143, 2982–2989 (1989).

    CAS  PubMed  Google Scholar 

  11. Tanaka, K. et al. Differential production of prostaglandin D2 by human helper T cell subsets. J. Immunol. 164, 2277–2280 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Lewis, R. A. et al. Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. 129, 1627–1631 (1982).

    CAS  PubMed  Google Scholar 

  13. Holgate, S. T., Burns, G. B., Robinson, C. & Church, M. K. Anaphylactic- and calcium-dependent generation of prostaglandin D2 (PGD2), thromboxane B2, and other cyclooxygenase products of arachidonic acid by dispersed human lung cells and relationship to histamine release. J. Immunol. 133, 2138–2144 (1984).

    CAS  PubMed  Google Scholar 

  14. Smith, M. J., Ford-Hutchinson, A. W. & Bray, M. A. Leukotriene B: a potential mediator of inflammation. J. Pharm. Pharmacol. 32, 517–518 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E. & Smith, M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286, 264–265 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Payan, D. G., Missirian-Bastian, A. & Goetzl, E. J. Human T-lymphocyte subset specificity of the regulatory effects of leukotriene B4 . Proc. Natl Acad. Sci. USA 81, 3501–3505 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leppert, D. et al. Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids. FASEB J. 9, 1473–1481 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Bacon, K. B., Camp, R. D., Cunningham, F. M. & Woollard, P. M. Contrasting in vitro lymphocyte chemotactic activity of the hydroxyl enantiomers of 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Br. J. Pharmacol. 95, 966–974 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Jong, E. M., van Erp, P. E., van Vlijmen, I. M. & van de Kerkhof, P. C. The inter-relation between inflammation and epidermal proliferation in normal skin following epicutaneous application of leukotriene-B4 — an immunohistochemical study. Clin. Exp. Dermatol. 17, 413–420 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, W. W. et al. Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils. J. Exp. Med. 188, 1063–1074 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tager, A. M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nature Immunol. 4, 982–990 (2003). This report is the first description of the expression of BLT1 by CD4+effector T cells and its function. Using an active immunization model of asthma, it identifies a requirement for the LTB 4 –BLT1 pathway in the early recruitment of CD4+ and CD8+ T cells to the airways.

    Article  CAS  Google Scholar 

  23. Goodarzi, K., Goodarzi, M., Tager, A. M., Luster, A. D. & von Andrian, U. H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nature Immunol. 4, 965–973 (2003).

    Article  CAS  Google Scholar 

  24. Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P. & Swanson, B. J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nature Immunol. 4, 974–981 (2003). References 23 and 24 are the first descriptions of the expression of BLT1 by CD8+ effector T cells and its function. Reference 23 identifies a requirement for the LTB 4 –BLT1 pathway in CD8+ effector T-cell trafficking to the inflamed peritoneum. Reference 24 identifies LTB 4 as the chemoattractant mediating the CD8+ effector T-cell migration that is induced by activated mast cells.

    Article  CAS  Google Scholar 

  25. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagata, K. et al. Selective expression of a novel surface molecule by human TH2 cells in vivo. J. Immunol. 162, 1278–1286 (1999).

    CAS  PubMed  Google Scholar 

  28. Hirai, H. et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 193, 255–261 (2001). This report identifies PGD 2 as a natural ligand of DP2, a G-protein-coupled receptor that was identified by its selective expression by T H 2 cells but not T H 1 cells. It also shows that in response to PGD 2 , DP2 induces intracellular calcium mobilization and chemotaxis of T H 2 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cosmi, L. et al. CRTH2 is the most reliable marker for the detection of circulating human type 2 TH and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol. 30, 2972–2979 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (TH1s) and TH2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 TH cells. J. Immunol. 161, 5111–5115 (1998).

    CAS  PubMed  Google Scholar 

  33. Iwasaki, M. et al. Association of a new-type prostaglandin D2 receptor CRTH2 with circulating T helper 2 cells in patients with atopic dermatitis. J. Invest. Dermatol. 119, 609–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. van der Heijden, F. L., Wierenga, E. A., Bos, J. D. & Kapsenberg, M. L. High frequency of IL-4-producing CD4+ allergen-specific T lymphocytes in atopic dermatitis lesional skin. J. Invest. Dermatol. 97, 389–394 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Dahlen, S. E. et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc. Natl Acad. Sci. USA 78, 3887–3891 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tonnesen, M. G. Neutrophil–endothelial cell interactions: mechanisms of neutrophil adherence to vascular endothelium. J. Invest. Dermatol. 93, 53S–58S (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A. & Springer, T. A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Tager, A. M. et al. BLTR mediates leukotriene B4-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis. J. Exp. Med. 192, 439–446 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerszten, R. E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Monneret, G., Gravel, S., Diamond, M., Rokach, J. & Powell, W. S. Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood 98, 1942–1948 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Henderson, W. R. et al. The importance of leukotrienes in airway inflammation in a mouse model of asthma. J. Exp. Med. 184, 1483–1494 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Turner, N. C. & Dollery, C. T. Release of arachidonic acid metabolites and histamine from sensitized guinea-pig lung following antigen challenge. Br. J. Pharmacol. 93, 751–758 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walls, A. F. et al. Inflammatory mediators and cellular infiltration of the lungs in a guinea pig model of the late asthmatic reaction. Lung 169, 227–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Seymour, M. L. et al. Leukotriene and prostanoid pathway enzymes in bronchial biopsies of seasonal allergic asthmatics. Am. J. Respir. Crit. Care Med. 164, 2051–2056 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Zaitsu, M. et al. Leukotriene synthesis is increased by transcriptional up-regulation of 5-lipoxygenase, leukotriene A4 hydrolase, and leukotriene C4 synthase in asthmatic children. J. Asthma 40, 147–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Shindo, K., Fukumura, M. & Miyakawa, K. Leukotriene B4 levels in the arterial blood of asthmatic patients and the effects of prednisolone. Eur. Respir. J. 8, 605–610 (1995).

    CAS  PubMed  Google Scholar 

  47. Sampson, A. P., Castling, D. P., Green, C. P. & Price, J. F. Persistent increase in plasma and urinary leukotrienes after acute asthma. Arch. Dis. Child 73, 221–225 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wenzel, S. E. et al. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am. J. Respir. Crit. Care Med. 152, 897–905 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Zaitsu, M. et al. Direct evidence that LTC4 and LTB4 but not TXA2 are involved in asthma attacks in children. J. Asthma 35, 445–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Csoma, Z. et al. Increased leukotrienes in exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med. 166, 1345–1349 (2002).

    Article  PubMed  Google Scholar 

  51. Montuschi, P. & Barnes, P. J. Exhaled leukotrienes and prostaglandins in asthma. J. Allergy Clin. Immunol. 109, 615–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Drazen, J. M. Comparative contractile responses to sulfidopeptide leukotrienes in normal and asthmatic human subjects. Ann. NY Acad. Sci. 524, 289–297 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Sehmi, R. et al. Interleukin-5 selectively enhances the chemotactic response of eosinophils obtained from normal but not eosinophilic subjects. Blood 79, 2952–2959 (1992).

    CAS  PubMed  Google Scholar 

  54. Rae, S. A. & Smith, M. J. H. The stimulation of lysosomal enzyme secretion from human polymorphonuclear leucocytes by leukotriene B4 . J. Pharm. Pharmacol. 33, 616–617 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Sumimoto, H., Takeshige, K. & Minakami, S. Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4 . Biochim. Biophys. Acta 803, 271–277 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Hebert, M. J., Takano, T., Holthofer, H. & Brady, H. R. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J. Immunol. 157, 3105–3115 (1996).

    CAS  PubMed  Google Scholar 

  57. Fahy, J. V., Kim, K. W., Liu, J. & Boushey, H. A. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol. 95, 843–852 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Lamblin, C. et al. Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am. J. Respir. Crit. Care Med. 157, 394–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Sur, S. et al. Sudden-onset fatal asthma. A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am. Rev. Respir. Dis. 148, 713–719 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, M. C. et al. Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am. Rev. Respir. Dis. 142, 126–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Crea, A. E., Nakhosteen, J. A. & Lee, T. H. Mediator concentrations in bronchoalveolar lavage fluid of patients with mild asymptomatic bronchial asthma. Eur. Respir. J. 5, 190–195 (1992).

    CAS  PubMed  Google Scholar 

  64. Murray, J. J. et al. Release of prostaglandin D2 into human airways during acute antigen challenge. N. Engl. J. Med. 315, 800–804 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Wenzel, S. E., Westcott, J. Y., Smith, H. R. & Larsen, G. L. Spectrum of prostanoid release after bronchoalveolar allergen challenge in atopic asthmatics and in control groups. An alteration in the ratio of bronchoconstrictive to bronchoprotective mediators. Am. Rev. Respir. Dis. 139, 450–457 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Alving, K., Matran, R. & Lundberg, J. M. The possible role of prostaglandin D2 in the long-lasting airways vasodilatation induced by allergen in the sensitized pig. Acta Physiol. Scand. 143, 93–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Flower, R. J., Harvey, E. A. & Kingston, W. P. Inflammatory effects of prostaglandin D2 in rat and human skin. Br. J. Pharmacol. 56, 229–233 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marom, Z., Shelhamer, J. H. & Kaliner, M. Effects of arachidonic acid, monohydroxyeicosatetraenoic acid and prostaglandins on the release of mucous glycoproteins from human airways in vitro. J. Clin. Invest. 67, 1695–1702 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hardy, C. C., Robinson, C., Tattersfield, A. E. & Holgate, S. T. The bronchoconstrictor effect of inhaled prostaglandin D2 in normal and asthmatic men. N. Engl. J. Med. 311, 209–213 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Fuller, R. W., Dixon, C. M., Dollery, C. T. & Barnes, P. J. Prostaglandin D2 potentiates airway responsiveness to histamine and methacholine. Am. Rev. Respir. Dis. 133, 252–254 (1986).

    CAS  PubMed  Google Scholar 

  71. Emery, D. L., Djokic, T. D., Graf, P. D. & Nadel, J. A. Prostaglandin D2 causes accumulation of eosinophils in the lumen of the dog trachea. J. Appl. Physiol. 67, 959–962 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Oshiba, A. et al. Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. J. Clin. Invest. 97, 1398–1408 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. al-Laith, M. et al. Immunoglobulin-G-dependent stimulation of guinea pig lung mast cells and macrophages. Allergy 48, 608–614 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Paterson, N. A., Wasserman, S. I., Said, J. W. & Austen, K. F. Release of chemical mediators from partially purified human lung mast cells. J. Immunol. 117, 1356–1362 (1976).

    CAS  PubMed  Google Scholar 

  75. Heavey, D. J. et al. Generation of leukotriene C4, leukotriene B4, and prostaglandin D2 by immunologically activated rat intestinal mucosa mast cells. J. Immunol. 140, 1953–1957 (1988).

    CAS  PubMed  Google Scholar 

  76. Katz, H. R. et al. Secretory granule mediator release and generation of oxidative metabolites of arachidonic acid via Fc–IgG receptor bridging in mouse mast cells. J. Immunol. 148, 868–871 (1992).

    CAS  PubMed  Google Scholar 

  77. Hsueh, W., Gonzalez-Crussi, F. & Henderson, S. LTB4 production and lysosomal enzyme release by rat alveolar macrophages: effects of phagocytosis, receptor binding, and ionophore stimulation. Exp. Lung Res. 13, 385–399 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Rankin, J. A., Schrader, C. E., Smith, S. M., Lewis, R. A. & Lewis, C. R. Recombinant interferon-γ primes alveolar macrophages cultured in vitro for the release of leukotriene B4 in response to IgG stimulation. J. Clin. Invest. 83, 1691–1700 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brewer, J. P., Kisselgof, A. B. & Martin, T. R. Genetic variability in pulmonary physiological, cellular, and antibody responses to antigen in mice. Am. J. Respir. Crit. Care Med. 160, 1150–1156 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Hamid, Q., Tulic, M. K., Liu, M. C. & Moqbel, R. Inflammatory cells in asthma: mechanisms and implications for therapy. J. Allergy Clin. Immunol. 111, S5–S12 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Krump, E. & Borgeat, P. Kinetics of 5-lipoxygenase activation, arachidonic acid release, and leukotriene synthesis in human neutrophils: effects of granulocyte-macrophage colony-stimulating factor. Biochim. Biophys. Acta 1213, 135–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Stephens, R. & Chaplin, D. D. IgE cross-linking or lipopolysaccharide treatment induces recruitment of TH2 cells to the lung in the absence of specific antigen. J. Immunol. 169, 5468–5476 (2002). This report shows that crosslinking of IgE (or treatment with lipopolysaccharide) can recruit T H 2 cells to the airways, with or without a concurrent challenge with the cognate T H 2-cell-response-inducing antigen. The experiments that involve the crosslinking of IgE indicate that mast-cell activation alone is sufficient for complete recruitment of T H 2 cells early in allergic pulmonary inflammation.

    Article  CAS  PubMed  Google Scholar 

  83. Kung, T. T. et al. Mast cells modulate allergic pulmonary eosinophilia in mice. Am. J. Respir. Cell Mol. Biol. 12, 404–409 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Takeda, K. et al. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J. Exp. Med. 186, 449–454 (1997). References 83 and 84 examine allergic pulmonary inflammation in cKIT-deficient (W/Wv) mice, which have congenitally low numbers of tissue mast cells. Reference 83 shows reduced expression of the asthma phenotype in W/Wv mice after a single aeroallergen challenge, whereas reference 84 shows comparable expression of the asthma phenotype in W/Wv and wild-type mice after three airway antigen challenges. These data are consistent with the hypothesis that mast-cell-derived mediators have an important role in airway T-cell recruitment, specifically at early time points in active immunization models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matsuoka, T. et al. Prostaglandin D2 as a mediator of allergic asthma. Science 287, 2013–2017 (2000). This report is the first description of mice that are genetically deficient in DP1, and using an active immunization model of asthma, it identifies a requirement for the PGD 2 –DP1 pathway in the recruitment of T cells to the airways. The airways of DP1-deficient mice also showed decreased T H 2-cytokine levels, eosinophil recruitment, mucus hypersecretion and hyper-responsiveness.

    Article  CAS  PubMed  Google Scholar 

  86. Pinzar, E. et al. Prostaglandin D synthase gene is involved in the regulation of non-rapid eye movement sleep. Proc. Natl Acad. Sci. USA 97, 4903–4907 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujitani, Y. et al. Pronounced eosinophilic lung inflammation and TH2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. J. Immunol. 168, 443–449 (2002). This report examines allergic pulmonary inflammation in transgenic mice that overexpress PGDS in various organs, including the lungs. Increased PGD 2 levels in the lungs of these mice were associated with increased airway lymphocyte recruitment, as well as increased airway T H 2-cytokine levels and eosinophil recruitment, confirming the involvement of PGD 2 in T-cell trafficking in active immunization asthma models.

    Article  CAS  PubMed  Google Scholar 

  88. Honda, K. et al. Prostaglandin D2 reinforces TH2 type inflammatory responses of airways to low-dose antigen through bronchial expression of macrophage-derived chemokine. J. Exp. Med. 198, 533–543 (2003). This report investigates the mechanism by which PGD 2 mediates T H 2-cell recruitment to the airways in active immunization asthma models. Pretreatment with aerosolized PGD 2 was shown to augment the recruitment of T H 2 cells to the airways of immunized mice challenged with low-dose aeroantigen. This augmentation of T-cell recruitment was shown to be mediated mainly by PGD 2 -induced airway epithelial-cell expression of CCL22, a chemokine that attracts T H 2 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sekiya, T. et al. Increased levels of a TH2-type CC chemokine thymus and activation-regulated chemokine (TARC) in serum and induced sputum of asthmatics. Allergy 57, 173–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lezcano-Meza, D., Negrete-Garcia, M. C., Dante-Escobedo, M. & Teran, L. M. The monocyte-derived chemokine is released in the bronchoalveolar lavage fluid of steady-state asthmatics. Allergy 58, 1125–1130 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D. & Leder, P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185, 785–790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gonzalo, J. -A. et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol. 163, 403–411 (1999).

    CAS  PubMed  Google Scholar 

  93. Chung, C. D. et al. CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J. Immunol. 170, 581–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Humbles, A. A. et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl Acad. Sci. USA 99, 1479–1484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schuh, J. M. et al. Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in Ccr4−/− mice. FASEB J. 16, 1313–1315 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Goya, I. et al. Absence of CCR8 does not impair the response to ovalbumin-induced allergic airway disease. J. Immunol. 170, 2138–2146 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001). This report examines the role of STAT6 in T H 2-cell trafficking, as distinct from its role in T H 2-cell differentiation. It indicates that cytokines generated by recruited T H 2-cells activate resident pulmonary cells in a STAT6-dependent manner; the pulmonary cells then secrete T H 2-cell and eosinophil-chemotactic chemokines, which in turn amplify the T H 2-cell response by attracting large numbers of T H 2 cells and eosinophils to the airways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Garcia-Zepeda, E. A. et al. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nature Med. 2, 449–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Mochizuki, M., Bartels, J., Mallet, A. I., Christophers, E. & Schroder, J. M. IL-4 induces eotaxin: a possible mechanism of selective eosinophil recruitment in helminth infection and atopy. J. Immunol. 160, 60–68 (1998).

    CAS  PubMed  Google Scholar 

  100. Li, L. et al. Effects of TH2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J. Immunol. 162, 2477–2487 (1999).

    CAS  PubMed  Google Scholar 

  101. Shinkai, A. et al. A novel human CC chemokine, eotaxin-3, which is expressed in IL-4-stimulated vascular endothelial cells, exhibits potent activity toward eosinophils. J. Immunol. 163, 1602–1610 (1999).

    CAS  PubMed  Google Scholar 

  102. Zimmermann, N. et al. Murine eotaxin-2: a constitutive eosinophil chemokine induced by allergen challenge and IL-4 overexpression. J. Immunol. 165, 5839–5846 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Matsukura, S. et al. Activation of eotaxin gene transcription by NF-κB and STAT6 in human airway epithelial cells. J. Immunol. 163, 6876–6883 (1999).

    CAS  PubMed  Google Scholar 

  104. Sekiya, T. et al. Inducible expression of a TH2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J. Immunol. 165, 2205–2213 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Presta, L. G. et al. Humanization of an antibody directed against IgE. J. Immunol. 151, 2623–2632 (1993).

    CAS  PubMed  Google Scholar 

  106. Fahy, J. V. et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 155, 1828–1834 (1997). This report examines the effect that humanized mouse monoclonal antibody specific for the FcεR1-binding domain of human IgE has on allergic airway responses. It shows that treatment with IgE-specific antibody suppresses both the early- and late-phase responses to inhaled allergen in allergic asthmatic individuals.

    Article  CAS  PubMed  Google Scholar 

  107. Pauwels, R. The relationship between airway inflammation and bronchial hyperresponsiveness. Clin. Exp. Allergy 19, 395–398 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Busse, W. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 108, 184–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Soler, M. et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 18, 254–261 (2001). References 108 and 109 report the results of phase III, double-blinded, placebo-controlled trials of IgE-specific monoclonal antibody (omalizumab) treatment of patients with moderate-to-severe asthma who are dependent on inhaled corticosteroids. In both trials, treatment with IgE-specific antibody resulted in patients having significantly fewer asthma exacerbations, as well as being able to tolerate significant reductions in inhaled steroid doses.

    Article  CAS  PubMed  Google Scholar 

  110. Nagakura, T. et al. GC/MS analysis of urinary excretion of 9α,11β-PGF2 in acute and exercise-induced asthma in children. Clin. Exp. Allergy 28, 181–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Israel, E., Cohn, J., Dube, L. & Drazen, J. M. Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. Zileuton Clinical Trial Group. JAMA 275, 931–936 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Turner, C. R. et al. In vitro and in vivo effects of leukotriene B4 antagonism in a primate model of asthma. J. Clin. Invest. 97, 381–387 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liston, T. E. et al. Pharmacokinetics and pharmacodynamics of the leukotriene B4 receptor antagonist CP-105,696 in man following single oral administration. Br. J. Clin. Pharmacol. 45, 115–121 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Birke, F. W., Meade, C. J., Anderskewitz, R., Speck, G. A. & Jennewein, H. M. In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B4 receptor antagonist. J. Pharmacol. Exp. Ther. 297, 458–466 (2001).

    CAS  PubMed  Google Scholar 

  115. Stevenson, D. D. & Zuraw, B. L. Pathogenesis of aspirin-exacerbated respiratory disease. Clin. Rev. Allergy Immunol. 24, 169–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Arimura, A. et al. Prevention of allergic inflammation by a novel prostaglandin receptor antagonist, S-5751. J. Pharmacol. Exp. Ther. 298, 411–419 (2001).

    CAS  PubMed  Google Scholar 

  117. Sugimoto, H. et al. An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J. Pharmacol. Exp. Ther. 305, 347–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Aizawa, H., Shigyo, M., Nogami, H., Hirose, T. & Hara, N. BAY u3405, a thromboxane A2 antagonist, reduces bronchial hyperresponsiveness in asthmatics. Chest 109, 338–342 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.D.L. and A.M.T. gratefully acknowledge grant support from the National Institutes of Health, United States, and the Dana Foundation, United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Luster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

5-LO

BLT1

BLT2

CCL1

CCL11

CCL17

CCL22

CCL24

CCL26

CCR3

CCR4

CCR8

COX1

COX2

DP1

DP2

FcεRI

FLAP

H-PGDS

IFN-γ

IL-4

IL-5

IL-13

L-PGDS

LTA4H

LTC4S

STAT6

FURTHER INFORMATION

Andrew Luster's laboratory

Glossary

ALLERGIC PULMONARY INFLAMMATION

Lung inflammation induced by immediate and delayed hypersensitivity reactions to air-borne antigens. Allergic pulmonary inflammation is characterized pathologically by T helper 2 cell and eosinophil infiltration, and mucus hypersecretion, and physiologically by hyper-responsiveness to bronchoconstricting stimuli.

ESTERIFIED

Combination of one organic compound with another through the formation of an ester: that is, the condensation of a hydroxyl group of one compound with a carboxyl group of another.

LIPOCALIN

Member of a large superfamily of small, mostly extracellular proteins of diverse function. Lipocalins have two common features: an eight-stranded antiparallel β-sheet closed back on itself to form a continuously hydrogen-bonded β-barrel; and the ability to bind small, mainly hydrophobic molecules.

CENTRAL MEMORY T (TCM) CELLS

Antigen-experienced CD8+ T cells that lack immediate effector function but are able to mediate rapid recall responses. They also rapidly develop the phenotype and function of effector memory cells after restimulation with antigen. Central memory T cells retain the migratory properties of naive cells and therefore circulate through the secondary lymphoid organs.

EFFECTOR MEMORY T CELLS

Antigen-experienced CD8+ T cells that have immediate effector capabilities, such as cytotoxicity, and can efficiently migrate to peripheral sites of inflammation.

LEUKOCYTE ROLLING

The initial interactions that occur between circulating leukocytes and the endothelial cells of inflamed tissues are transient low-affinity adhesive interactions that are mediated by the selectin family of adhesion molecules, resulting in the rolling of leukocytes along the endothelial surface. The process of rolling slows leukocytes to velocities less than those of circulating erythrocytes.

LEUKOCYTE FIRM ADHESION

The interactions of rolling leukocytes with chemokines or lipid mediators, such as leukotriene B4, at the endothelial surface lead to the activation of leukocyte integrins — another family of adhesion molecules. When activated, integrins mediate high-affinity adhesive interactions between leukocytes and endothelial cells, resulting in the arrest and firm adhesion of rolling leukocytes.

INTRAVITAL MICROSCOPY STUDIES

Examination of biological processes, such as leukocyte–endothelial cell interactions, in living tissue. In general, translucent tissues are used, such as the mesentery or cremaster muscle, which can be exteriorized and mounted for microscopic observation.

BRONCHOALVEOLAR LAVAGE

Delivery of saline to the airways and airspaces of the lungs, followed by retrieval of the fluid. This procedure is carried out to obtain samples of the cells, proteins or other materials that line the aerated regions of the lungs.

BRONCHOCONSTRICTION

Contraction of smooth muscle that surrounds the airways, resulting in airway narrowing and air-flow obstruction, which produces symptoms of wheezing, shortness of breath and chest tightness. In asthma, bronchoconstriction is thought to be mediated by inflammatory mediators, including prostaglandins and leukotrienes, and it can usually be reversed using β-adrenergic agonist or anticholinergic medications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luster, A., Tager, A. T-cell trafficking in asthma: lipid mediators grease the way. Nat Rev Immunol 4, 711–724 (2004). https://doi.org/10.1038/nri1438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing