Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tolerance, not immunity, crucially depends on IL-2

Key Points

  • Mice deficient in interleukin-2 (IL-2), the α-chain of the IL-2 receptor (Il-2Rα) or the the β-chain of the IL-2 receptor (IL-2Rβ) are characterized by hyperproliferation and hyperactivation of peripheral T cells, together with haemolytic anaemia and multi-organ autoimmune disease, which results in death by 4 to 12 weeks of age. This observation indicates that the main role of IL-2 is to control peripheral T-cell tolerance.

  • IL-2-, IL-2Rα- and IL-2Rβ-deficient mice have a greatly reduced number of CD4+CD25+ regulatory T (TReg) cells. Correcting TReg-cell production in such mice is sufficient to prevent the onset of lethal autoimmune disease, thereby directly showing that the main role for IL-2 in peripheral T-cell tolerance is the production of TReg cells.

  • IL-2 contributes to TReg-cell production during thymic development and in peripheral lymphoid tissues. One role for IL-2 seems to be as a growth factor for TReg cells.

  • IL-2 is essential for T-cell responses in vitro. Both T-cell clonal expansion and differentiation into effector cells do not occur appropriately in the absence of signalling through the IL-2R.

  • Remarkably, both IL-2-deficient and IL-2R-deficient mice mount effective immune responses in vivo. These relatively normal immune responses are not secondary to autoimmune disease, because effective immune responses occur when disease is prevented in such mice.

  • IL-2 does, however, contribute to T-cell immunity in vivo. IL-2 seems to be more important during the later stages of immune responses. It has been shown to contribute to the type or magnitude of effector cell that is produced and to be involved in the migration or proliferation of effector cells in non-lymphoid tissue.

  • There are distinct requirements for IL-2 in vitro and in vivo. This is probably because IL-2 is the dominant cytokine for T-cell growth and effector-cell differentiation in vitro, whereas there is redundancy in these activities in vivo. The nature of such redundant signals remains to be defined.

  • Clinical applications that target IL-2 and/or the IL-2R might not be synonymous with blocking or enhancing T-cell immunity. TReg cells might also be affected by these types of therapeutic strategy.

Abstract

Interleukin-2 (IL-2) was identified based on its potent T-cell growth-factor activity and is widely considered to be a key cytokine in T-cell-dependent immune responses. However, the main non-redundant activity of this cytokine centres on the regulation of T-cell tolerance, and recent studies indicate that a failure in the production of CD4+CD25+ regulatory T cells is the underlying cause of autoimmunity in the absence of IL-2. In marked contrast to the importance of IL-2 in peripheral T-cell tolerance, T-cell immunity is readily elicited to various agents in the absence of IL-2 in vivo. Here, we discuss these findings and, in particular, the action of IL-2 on regulatory T cells and effector cells, and the targeting of IL-2 and/or the IL-2 receptor in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-2 receptor signalling.
Figure 2: IL-2 is a growth factor for TReg cells.
Figure 3: Models of the cellular source of IL-2 for TReg cells.
Figure 4: Signal 3 is essential for production of an efficient T-cell response.

Similar content being viewed by others

References

  1. Nelson, B. H. & Willerford, D. M. Biology of the interleukin-2 receptor. Adv. Immunol. 70, 1–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. He, Y. -W. & Malek, T. R. The structure and function of γc-dependent cytokines and receptors: regulation of T lymphocyte development and homeostasis. Crit. Rev. Immunol. 18, 503–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Parrish-Novak, J., Foster, D. C., Holly, R. D. & Clegg, C. H. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J. Leukoc. Biol. 72, 856–863 (2002).

    CAS  PubMed  Google Scholar 

  4. Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110 (2001).

    CAS  PubMed  Google Scholar 

  5. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Sadlack, B. et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol. 25, 3053–3059 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sadlack, B., Kuhn, R., Schorle, H., Muller, W. & Horak, I. Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. Eur. J. Immunol. 24, 281–284 (1994). References 5–7 describe the lymphoproliferation and lethal autoimmunity that is associated with IL-2 deficiency and indicate that the main function of IL-2 is to control peripheral T-cell tolerance.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, H., Duncan, G. S., Takimoto, H. & Mak, T. W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. J. Exp. Med. 185, 499–505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Gillis, S. & Smith, K. A. In vitro generation of tumor-specific cytotoxic lymphocytes. Secondary allogeneic mixed tumor lymphocyte culture of normal murine spleen cells. J. Exp. Med. 146, 468–482 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taniguchi, T. et al. Structure and expression of a cloned cDNA for human interleukin-2. Nature 302, 305–310 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sakaguchi, S. Naturally arising CD4+ regulatory T Cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002). This paper was the first to provide direct evidence that IL-2- and/or IL-2R-dependent events have a role in the production of T Reg cells. T Reg -cell production and function was restored after thymus-specific expression of IL-2Rβ in IL-2rβ−/− mice, thereby preventing lethal autoimmunity. Identical suppression of autoimmunity was shown after adoptive transfer of wild-type T Reg cells into neonatal II-2rβ−/− mice. This protection was contingent on both the donor T Reg cells expressing a functional IL-2R and the host producing IL-2.

    Article  CAS  PubMed  Google Scholar 

  19. Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida, A. R., Legrand, N., Papiernik, M. & Freitas, A. A. Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. 169, 4850–4860 (2002).

    Article  PubMed  Google Scholar 

  22. Klebb, G. et al. Interleukin-2 is indispensable for development of immunological self-tolerance. Clin. Immunol. Immunopathol. 81, 282–286 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, H., Zhou, Y. W., Kato, M., Mak, T. W. & Nakashima, I. Normal regulatory αβ T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor β in vivo. J. Exp. Med. 190, 1561–1572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolf, M., Schimpl, A. & Hunig, T. Control of T cell hyperactivation in IL-2-deficient mice by CD4+CD25 and CD4+CD25+ T cells: evidence for two distinct regulatory mechanisms. Eur. J. Immunol. 31, 1637–1645 (2001). This was the first paper to show that the abnormal behaviour of II-2−/− T cells is controlled by T Reg cells. The transfer of II-2−/− CD4+ T cells to athymic nude mice led to uncontrolled clonal expansion of the donor cells, whereas the co-transfer of CD4+CD25+ T cells and II-2−/− CD4+ T cells to nude mice prevented this abnormal proliferation.

    Article  CAS  PubMed  Google Scholar 

  25. Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malek, T. R., Porter, B. O., Codias, E. K., Scibelli, P. & Yu, A. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J. Immunol. 164, 2905–2914 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Burchill, M. A. et al. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J. Immunol. 171, 5853–5864 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Snow, J. W. et al. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J. Immunol. 171, 5042–5050 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Antov, A., Yang, L., Vig, M., Baltimore, D. & Van Parijs, L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J. Immunol. 171, 3435–3441 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Thornton, A. M., Piccirillo, C. A. & Shevach, E. M. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur. J. Immunol. 34, 366–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Tang, T. et al. In vitro expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R. & Edinger, M. Large scale in vitro expansion of polyclonal human CD4+CD25hi regulatory T Cells. Blood 104, 895–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bensinger, S. J. et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J. Immunol. 172, 5287–5296 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Cozzo, C., Larkin, J. & Caton, A. J. Self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J. Immunol. 171, 5678–5682 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Gavin, M. A., Clarke, S. R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nature Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  37. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, Q. et al. CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Thornton, A. M., Donovan, E. E., Piccirillo, C. A. & Shevach, E. M. IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  42. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  43. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlowCD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol. 2, 882–888 (2001).

    Article  CAS  Google Scholar 

  49. Smith, K. A. T-cell growth factor. Immunol. Rev. 51, 337–357 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. He, Y. -W., Nakajima, H., Leonard, W. J., Adkins, B. & Malek, T. R. The common γ-chain of cytokine receptors regulates intrathymic T cell development at multiple stages. J. Immunol. 158, 2592–2599 (1997).

    CAS  PubMed  Google Scholar 

  51. Depper, J. M., Leonard, W. J., Robb, R. J., Waldmann, T. A. & Greene, W. C. Blockade of the interleukin-2 receptor by anti-Tac antibody: inhibition of human lymphocyte activation. J. Immunol. 131, 690–696 (1983).

    CAS  PubMed  Google Scholar 

  52. Malek, T. R., Ortega, G., Jakway, J. P., Chan, C. & Shevach, E. M. The murine IL 2 receptor. II. Monoclonal anti-IL 2 receptor antibodies as specific inhibitors of T cell function in vitro. J. Immunol. 133, 1976–1982 (1984).

    CAS  PubMed  Google Scholar 

  53. Gillis, S., Gillis, A. E. & Henney, C. S. Monoclonal antibody directed against interleukin 2. I. Inhibition of T lymphocyte mitogenesis and the in vitro differentiation of alloreactive cytolytic T cells. J. Exp. Med. 154, 983–988 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Koretzky, G. A., Daniele, R. P., Greene, W. C. & Nowell, P. C. Evidence for an interleukin-independent pathway for human lymphocyte activation. Proc. Natl Acad. Sci. USA 80, 3444–3447 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schorle, H., Holtschke, T., Hunig, T., Shimpl, A. & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Razi-Wolf, Z., Hollander, G. A. & Reiser, H. Activation of CD4+ T lymphocytes from interleukin 2-deficient mice by costimulatory B7 molecules. Proc. Natl Acad. Sci. USA 93, 2903–2908 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Parijs, L. et al. Functional responses and apoptosis of CD25 (IL-2Rα)-deficient T cells expressing a transgenic antigen receptor. J. Immunol. 158, 3738–3745 (1997).

    CAS  PubMed  Google Scholar 

  58. Malek, T. R., Yu, A., Scibelli, P., Lichtenheld, M. G. & Codias, E. K. Broad programming by IL-2 receptor signaling for extended growth to multiple cytokines and functional maturation of antigen-activated T cells. J. Immunol. 166, 1675–1683 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Appleman, L. J., Berezovskaya, A., Grass, I. & Boussiotis, V. A. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J. Immunol. 164, 144–151 (2000). This paper shows that co-stimulation through CD28 regulates progression through the G1 phase of the cell cycle in an IL-2-independent manner. In the absence of IL-2, some T cells arrest at the G1–S transition, but a considerable number progress through S phase, indicating that CD28 mediates some T-cell proliferation in an IL-2-independent manner.

    Article  CAS  PubMed  Google Scholar 

  60. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Cote-Sierra, J. et al. Interleukin 2 plays a central role in TH2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lenardo, M. J. Interleukin-2 programs αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Kneitz, B., Herrmann, T., Yonehara, S. & Schimpl, A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur. J. Immunol. 25, 2572–2577 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Van Parijs, L. & Abbas, A. K. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280, 243–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Kung, J., Beller, D. & Ju, S. Lymphokine regulation of activation-induced apoptosis in T cells of IL-2 and IL-2Rβ knockout mice. Cell. Immunol. 185, 158–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Zheng, L., Trageser, C. L., Willerford, D. M. & Lenardo, M. J. T cell growth cytokines cause the superinduction of molecules mediating antigen-induced T lymphocyte death. J. Immunol. 160, 763–769 (1998).

    CAS  PubMed  Google Scholar 

  67. Kundig, T. M. et al. Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061 (1993). This paper shows that normal in vivo immune responses occur in IL-2-deficient mice, including the induction of protective CTL and antibody responses after viral infection. Both T H cells and NK cells showed reduced activity but were still functionally active. This study was the first to question the idea that IL-2 is essential for T-cell immunity in vivo.

    Article  CAS  PubMed  Google Scholar 

  68. Steiger, J., Nickerson, P. W., Steurer, W., Moscovitch-Lopatin, M. & Strom, T. B. IL-2 knockout recipient mice reject islet cell allografts. J. Immunol. 155, 489–498 (1995).

    CAS  PubMed  Google Scholar 

  69. Bachmann, M. F. et al. Antiviral immune responses in mice deficient for both interleukin-2 and interleukin-4. J. Virol. 69, 4842–4846 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nishimura, H. et al. Mice lacking interleukin-2 (IL-2)/IL-15 receptor β chain are susceptible to infection with avirulent Salmonella enterica subsp. enterica serovar choleraesuis but mice lacking IL-2 are resistant. Infect. Immun. 69, 1226–1229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Suzuki, H., Hayakawa, A., Bouchard, D., Nakashima, I. & Mak, T. W. Normal thymic selection, superantigen-induced deletion and Fas-mediated apoptosis of T cells in IL-2 receptor β-chain deficient mice. Int. Immunol. 9, 1367–1374 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. D'Souza, W. N. & Lefrancois, L. IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J. Immunol. 171, 5727–5735 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Leung, D. T., Morefield, S. & Willerford, D. M. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J. Immunol. 164, 3527–3534 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. D'Souza, W. N., Schluns, K. S., Masopust, D. & Lefrancois, L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J. Immunol. 168, 5566–5572 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Yu, A. et al. Efficient induction of primary and secondary T cell-dependent immune responses in vivo in the absence of functional IL-2 and IL-15 receptors. J. Immunol. 170, 236–242 (2003). This paper shows that T-cell immunity to skin grafts, T H -cell-dependent antibody responses and T-cell mediated responses to viruses are mostly functional in II-2rβ−/− mice, in which the mature T cells are peripherally non-responsive to IL-2 and IL-15. Because these mice were made free of autoimmune disease by correcting T Reg -cell production, the resulting immune responses cannot be the result of improper activation, a property that is typically associated with IL-2- or IL-2R-deficiency.

    Article  CAS  PubMed  Google Scholar 

  76. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Cousens, L. P., Orange, J. S. & Biron, C. A. Endogenous IL-2 contributes to T cell expansion and IFN-γproduction during lymphocytic choriomeningitis virus infection. J. Immunol. 155, 5690–5699 (1995).

    CAS  PubMed  Google Scholar 

  78. Su, H. C. et al. CD4+ and CD8+ T cell interactions in IFN-γ and IL-4 responses to viral infections: requirements for IL-2. J. Immunol. 160, 5007–5017 (1998).

    CAS  PubMed  Google Scholar 

  79. Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nature Med. 9, 540–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Cheng, L. E. & Greenberg, P. D. Selective delivery of augmented IL-2 receptor signals to responding CD8+ T cells increases the size of the acute antiviral response and of the resulting memory T cell pool. J. Immunol. 169, 4990–4997 (2002).

    Article  PubMed  Google Scholar 

  81. Cheng, L. E., Ohlen, C., Nelson, B. H. & Greenberg, P. D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl Acad. Sci. USA 99, 3001–3006 (2002). References 79–81 report the effect of systemic IL-2 during the clonal expansion, contraction and memory phases of in vivo T-cell responses to viral infection. IL-2 showed its greatest benefit during the contraction phase of the response, in which it increased proliferation and survival of long-lived virus-specific T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, X. C. et al. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nature Med. 7, 114–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Sepulveda, H., Cerwenka, A., Morgan, T. & Dutton, R. W. CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J. Immunol. 163, 1133–1142 (1999).

    CAS  PubMed  Google Scholar 

  84. Croft, M. Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev. 14, 265–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J. γ chain required for naive CD4+ T cell survival but not antigen proliferation. Nature Immunol. 1, 54–58 (2000).

    Article  CAS  Google Scholar 

  87. Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295–1302 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 193, 1303–1310 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193, 1285–1294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 31, 1247–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Taams, L. S. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25hi regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001). References 87–92 are the first reports to show that human CD4+CD25+ T cells isolated from peripheral blood have in vitro properties and suppressor functions similar to their mouse counterparts.

    Article  CAS  PubMed  Google Scholar 

  93. Roifman, C. M. Human IL-2 receptor α chain deficiency. Pediatr. Res. 48, 6–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Davey, R. T. Jr et al. Immunologic and virologic effects of subcutaneous interleukin 2 in combination with antiretroviral therapy: a randomized controlled trial. JAMA 284, 183–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Kovacs, J. A. et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N. Engl. J. Med. 335, 1350–1356 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Atkins, M. B. Interleukin-2: clinical applications. Semin. Oncol. 29, 12–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, J. C. et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol. 21, 3127–3132 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Murakami, M., Sakamoto, A., Bender, J., Kappler, J. & Marrack, P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl Acad. Sci. USA 99, 8832–8837 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sereti, I. et al. IL-2 induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood 104, 775–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. McHugh, R. S. & Shevach, E. M. Depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168, 5979–5983 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Foss, F. M. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann. NY Acad. Sci. 941, 166–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  104. Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  106. Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756–2761 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Woo, E. Y. et al. Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol. 168, 4272–4276 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Ichihara, F. et al. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res. 9, 4404–4408 (2003).

    PubMed  Google Scholar 

  109. Wolf, A. M. et al. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res. 9, 606–612 (2003).

    PubMed  Google Scholar 

  110. Sasada, T., Kimura, M., Yoshida, Y., Kanai, M. & Takabayashi, A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98, 1089–1099 (2003).

    Article  PubMed  Google Scholar 

  111. Church, A. C. Clinical advances in therapies targeting the interleukin-2 receptor. QJM 96, 91–102 (2003).

  112. Waldmann, T. A. & O'Shea, J. The use of antibodies against the IL-2 receptor in transplantation. Curr. Opin. Immunol. 10, 507–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.R.M. is supported by grants from the National Institutes of Health, United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Malek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

4-1BB

BCL-2

CD4

CD8

CD27

CD28

CD40L

CD62L

CD80

CD86

CTLA4

FAS

FOXP3

γc

IL-2

IL-2Rα

IL-2Rβ

IL-15

IL-15R

OX40

STAT5

TNF

transforming growth factor-β

Glossary

FOUR-BUNDLE α-HELICAL CYTOKINE

A cytokine that contains four regions of α-helical structure, such as interleukin-2 and other members of the common cytokine-receptor γ-chain family of cytokines.

LYMPHOPROLIFERATION

The in vivo growth and clonal expansion of lymphocytes.

CD4+CD25+ REGULATORY T (TReg) CELLS

A subset of lymphocytes that suppress autoreactive T cells that escape negative selection in the thymus.

PARACRINE

The production of a soluble effector that functions on target cells that are distinct from the cell that produced it.

ATHYMIC

Lacking a thymus.

PRECURSOR FREQUENCY

The initial number of antigen-specific lymphocytes relative to the total number that respond and clonally expand to a particular antigen during an immune response.

SUPERANTIGENS

Microbial products that activate T cells by crosslinking cell-surface-expressed T-cell receptors. They achieve this by binding to the Vβ region of a T-cell receptor; however, only particular Vβ regions are favoured.

ALLO-SPECIFIC CTL

An effector T-cell that responds to genetically distinct individuals of the same species. This response results in the lysis of cells that show cell-surface expression of the appropriate alloantigen, which is usually encoded by MHC class I genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malek, T., Bayer, A. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4, 665–674 (2004). https://doi.org/10.1038/nri1435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing