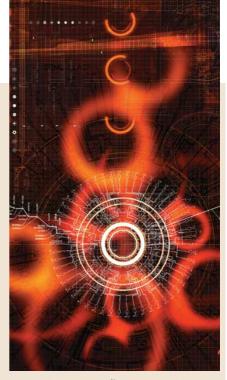
### INNATE IMMUNITY


# Selective activation

Toll-like receptor (TLR) recognition of microbial compounds initiates signalling cascades that activate inflammatory and immune-response genes. A recent report in *Nature* shows that the nuclear protein IκBζ (inhibitor of nuclear factor-κB (NF-κB), ζ; also known as MAIL and INAP) is required for the initiation of transcription of a subset of these genes.

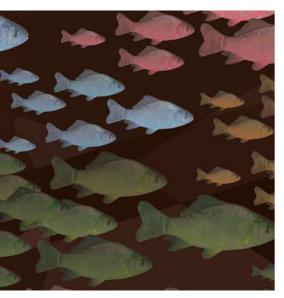
In this study,  $I\kappa B\zeta$  — previously known to be induced in response to interleukin-1 (IL-1) and the TLR4 ligand lipopolysaccharide (LPS) — was shown to be upregulated in cells stimulated through TLR2, TLR5, TLR7 and TLR9. The importance of this was shown by the observation that macrophages from  $I\kappa B\zeta$ -deficient mice were impaired in their ability to produce IL-6 in response to LPS, as well as ligands for other TLRs and IL-1, whereas tumour-necrosis factor (TNF)mediated IL-6 production was normal. By contrast, these macrophages produced wildtype levels of other inflammatory mediators (TNF and nitric oxide), indicating that  $I \ltimes B \zeta$  is specifically required for IL-6 production in response to TLR and IL-1 signals.

Promoter analysis showed that IκBζ overexpression enhanced LPS-induced *Il6* promoter activity, and this effect was dependent on the NF-κB-binding site in the *Il6* promoter. This site is bound by the p50 subunit of NF-κB, and after LPS stimulation, IκBζ was also detected at this site, interacting directly with p50. Consistent with the idea that IκBζ exerts its effects through p50, the production of IL-6 in response to TLR and IL-1 signals was impaired in p50-deficient macrophages, and IκBζ overexpression in these cells failed to induce high levels of IL-6 production.

This paper identifies inducible IκBζ as an essential first component of a two-step signalling pathway that elicits IL-6 production in response to TLR and IL-1 signals. The authors initial analysis indicates that other LPS-inducible genes, such as *Il12b* 



and *Csf2*, require  $I\kappa B\zeta$  function, and further studies will provide new insight into the specific pathways that regulate the expression of individual immune-response genes.


Karen Honey

References and links
ORIGINAL RESEARCH PAPER Yamamoto, M. et al.
Regulation of Toll/IL-1-receptor-mediated gene expression
by the inducible nuclear protein IxBζ. Nature 430, 218–222
(2004).

#### EVOLUTION

## Lampreys diversify differently

The ability to generate clonally diverse lymphocytes is a hallmark of the adaptive immune response in jawed vertebrates. This diversity is achieved by combining variable, diverse and



joining gene segments in the immunoglobulin and T-cell receptor (TCR) loci. Various aspects of adaptive immune responses — for example, accelerated rejection of second skin grafts and antigen-specific agglutinins — have been identified in jawless vertebrates, but orthologues of the immunoglobulin, TCR and MHC genes have not been found. Now, a team from Max Cooper's laboratory has identified a novel type of variable lymphocyte receptor (VLR), the diversity of which is based on the number and variable sequence of leucine-rich repeats (LRRs).

To search for elements of the vertebrate immune system, the authors generated a subtracted cDNA library based on activated versus non-activated lymphocytes from sea lamprey larvae. The most common sequences contained variable numbers of diverse LRR motifs. Each VLR was shown to have eight different features: a signal peptide, an amino-terminal LRR, a variable number of diverse LRRs, a connecting peptide, a carboxy-terminal LRR, a conserved carboxyl terminus, a glycosylphosphatidylinositol anchor and a hydrophobic tail. Individual lymphocytes were found to express VLRs in a monoallellic manner. Genomic analysis revealed a single germline gene that comprised only four exons and that could not encode the diverse full-length VLRs. The authors identified a series of variable diverse LRR sequences adjacent to the partial *VLR* gene; these are inserted into the partial *VLR* gene to generate mature *VLR* genes.

This study reveals that jawed and jawless vertebrates have evolved similar, but different, systems for generating variable lymphocyte receptors — one is a multigene recombinatorial strategy that uses gene segments encoding immunoglobulin domains, and the other is a somatic diversification strategy that is based on a single germline gene and the insertion of LRR sequences. The precise mechanism for the generation of the mature VLR in lampreys will be elucidated in future studies.

Elaine Bell

#### **(3)** References and links

ORIGINAL RESEARCH PAPER Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. *Nature* **430**, 174–180 (2004).

FURTHER READING Flajnik, M. Comparative analysis of immunoglobulin genes: surprises and portents. *Nature Rev. Immunol.* **2**, 688–698 (2002).

WEB SITE

Max Cooper's lab: http://www.microbio.uab.edu/faculty/cooper/index1.html