Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HIV and SIV CTL escape: implications for vaccine design

Key Points

  • CD8+ T cells (broadly, cytotoxic T lymphocytes, CTLs) have an important role in the control of immunodeficiency virus infection.

  • CTL escape is an important mechanism by which the virus evades the immune response.

  • The occurrence and timing of escape depends on a variety of factors. Similarly, the significance of escape for the patient and for viral evolution is variable, ranging from precipitation to AIDS at one extreme, to successful suppression of viraemia following escape at the other extreme.

  • CTL escape mutations that are most probably of relevance to natural or vaccine-induced immune-mediated control of viraemia are those that occur at a considerable fitness cost to the virus: that is, those that reduce viral replicative capacity. Recent examples of escape followed by immune control of HIV and simian immunodeficiency virus (SIV) are discussed.

  • The consequences for the evolution of HIV of the transmission of viruses that encode escape mutations depend on the fitness cost of the mutation: mutations that result in significantly reduced replication capacity of the virus revert to wild-type following transmission to an HLA-mismatched recipient, whereas mutations that incur little fitness cost probably persist.

  • Mechanisms of mutational escape, including recently described processing mutations, are discussed.

  • CTL escape has implications for vaccine design. The detailed understanding of qualitative differences between CTLs is crucial to determine which epitopes need to be included in a vaccine and which need to be excluded.

Abstract

Cytotoxic T lymphocytes (CTLs) have a central role in the successful control of immunodeficiency virus infection. Evasion of this immune response through CTL escape is therefore an important factor in HIV and simian immunodeficiency virus pathogenesis. During the course of an infection, the precise timing of the occurrence of escape mutations and their location in the viral genome can indicate the efficacy of certain CTL specificities and the cost to viral fitness of particular escape mutations — factors that are highly relevant to vaccine design. Also crucial for vaccine design is the extent to which CTL escape is driving the evolution of HIV at the population level. Here, we highlight the important lessons that can be learned from immunodeficiency virus CTL escape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The natural history of SIV infection.
Figure 2: Evolution of viral escape variants in Mamu-A*01-positive Indian macaques infected with SIV.
Figure 3: Pattern of the timing of HIV CTL escape in relation to emergence of different HLA-B57- and HLA-A2-restricted CTL specificities.
Figure 4: Efficacy of CTL activity and viral cost of escape.
Figure 5: The dynamic balance between the factors that contribute to the occurrence of escape.
Figure 6: Mechanisms of mutational escape in HIV and SIV.

Similar content being viewed by others

References

  1. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Koup, R. A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Borrow, P., Lewicki, H., Hahn, B., Shaw, G. & Oldstone, M. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matano, T. et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J. Virol. 72, 164–169 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Ogg, G. S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279, 2103–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Betts, M. R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Addo, M. M. et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edwards, B. H. et al. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J. Virol. 76, 2298–2305 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frahm, N. et al. Consistent cytotoxic-T-lymphocyte targeting of immunodominant regions in human immunodeficiency virus across multiple ethnicities. J. Virol. 78, 2187–2200 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Masemola, A. et al. Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: correlation with viral load. J. Virol. 78, 3233–3243 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hay, C. M. et al. Lack of viral escape and defective in vivo activation of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes in rapidly progressive infection. J. Virol. 73, 5509–5519 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Draenert, R. et al. Persistent recognition of autologous virus by high-avidity CD8 T cells in chronic, progressive human immunodeficiency virus type 1 infection. J. Virol. 78, 630–641 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goulder, P. J. R. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med. 3, 212–217 (1997). The evidence that CTL escape in a single epitope can precipitate loss of immune control in HIV infection.

    Article  CAS  PubMed  Google Scholar 

  17. Feeney, M. E. et al. Immune escape precedes breakthrough HIV-1 viremia and broadening of the CTL response in a HLA-B27-positive long-term non progressing child. J. Virol. (in the press).

  18. Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Goulder, P. J. R. et al. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res. Hum. Retroviruses 12, 1691–1698 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. O'Brien, S. J., Gao, X. & Carrington, M. HLA and AIDS: a cautionary tale. Trends Mol. Med. 7, 379–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Migueles, S. A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl Acad. Sci. USA 97, 2709–2714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, J. et al. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1 in Zambia. J. Virol. 76, 8276–8284 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, R. E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Balter, M. Modest Briton stirs up storm with views on role of CTLs. Science 280, 1860–1861 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Meyerhans, A. et al. In vivo persistence of a HIV-1-encoded HLA-B27-restricted cytotoxic T lymphocyte epitope despite specific in vitro reactivity. Eur. J. Immunol. 21, 2637–2640 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Nietfeld, W. et al. Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J. Immunol. 154, 2189–2197 (1995).

    Google Scholar 

  30. Chen, Z. W. et al. Cytotoxic T lymphocytes do not appear to select for mutations in an immunodominant epitope of simian immunodeficiency virus gag. J. Immunol. 149, 4060–4066 (1992).

    CAS  PubMed  Google Scholar 

  31. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nature Med. 1, 330–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Med. 3, 205–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Price, D. A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl Acad. Sci. USA 94, 1890–1895 (1997). References 32 and 33 provide evidence that acute escape in HIV infection precedes rapid progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans, D. T. et al. Definition of five new simian immunodeficiency virus cytotoxic T-lymphocyte epitopes and their restricting major histocompatibility complex class I molecules: evidence for an influence on disease progression. J. Virol. 74, 7400–7410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans, D. T. et al. Virus-specific CTL responses select for amino acid variation in SIV Env and Nef. Nature Med. 5, 1270–1276 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Allen, T. M. et al. Tat-specific CTL select for SIV escape variants during resolution of primary viremia. Nature 407, 386–390 (2000). Extensive escape in acute SIV infection.

    Article  CAS  PubMed  Google Scholar 

  37. O'Connor, D. H. et al. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nature Med. 8, 493–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Friedrich, T. C. et al. Extraepitopic compensatory substitutions partially restore fitness to simian immunodeficiency virus variants that escape from an immunodominant cytotoxic-T-lymphocyte response. J. Virol. 78, 2581–2585 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peyerl, F. W. et al. Simian–human immunodeficiency virus escape from cytotoxic T-lymphocyte recognition at a structurally constrained epitope. J. Virol. 77, 12572–8 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barouch, D. H. et al. Viral escape from dominant simian immunodeficiency virus epitope-specific cytotoxic T lymphocytes in DNA-vaccinated rhesus monkeys. J. Virol. 77, 7367–7375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, C. B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Barouch, D. H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415, 335–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Wilson, J. D. et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. AIDS 14, 225–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kelleher, A. D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Friedrich, T. C. et al. Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nature Med. 10, 275–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Leslie, A. J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nature Med. 10, 282–289 (2004). References 46 and 47 describe reversion of CTL escape mutations following transmission to HLA-mismatched recipients and the possible implications.

    Article  CAS  PubMed  Google Scholar 

  48. Pal, R. et al. ALVAC-SIV-gag-pol-env-based vaccination and macaque major histocompatibility complex class I (A*01) delay simian immunodeficiency virus SIVMAC-induced immunodeficiency. J. Virol. 76, 292–302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Z. Q. et al. Mamu-A*01 allele-mediated attenuation of disease progression in simian–human immunodeficiency virus infection. J. Virol. 76, 12845–12854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mothe, B. R. et al. Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVMAC239 replication. J. Virol. 77, 2736–2740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O'Connor, D. H. et al. Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-T-lymphocyte responses. J. Virol. 77, 9029–9040 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Altfeld, M. et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 17, 2581–2591 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Migueles, S. A. et al. The differential ability of HLA B*5701-positive long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J. Virol. 77, 6889–6898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matano, T. et al. Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. J. Exp. Med. 199, 1709–1718 (2004). Acute escape in a capsid-protein epitope is associated with reduced viral replicative capacity and subsequent immune-mediated suppression of SIV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goulder, P. J. R. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goulder, P. J. R. et al. Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation. J. Exp. Med. 185, 1423–1433 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brander, C. et al. Lack of strong immune selection pressure by the immunodominant, HLA-A*0201-restricted cytotoxic T lymphocyte response in chronic human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2559–2566 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Douek, D. C. et al. A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J. Immunol. 168, 3099–3104 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Price, D. A. et al. Clonal structure of immunodominant CD8+ T cell responses in primary SIV infection. (Keystone Symposia, HIV Vaccine Development: Progress and Prospects, 12–18 April 2004) Abstract 326. (Whistler, Canada).

  60. Yang, O. O. et al. Determinant of HIV-1 mutational escape from cytotoxic T lymphocytes. J. Exp. Med. 197, 1365–1375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, O. O. et al. Impacts of avidity and specificity on the antiviral efficiency of HIV-1-specific CTL. J. Immunol. 171, 3718–3724 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Van Baalen, C. A. et al. Kinetics of antiviral activity by human immunodeficiency virus type 1-specific cytotoxic T lymphocytes (CTL) and rapid selection of CTL escape virus in vitro. J. Virol. 72, 6851–6857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Van Baalen, C. A. et al. Impact of antigen expression kinetics on the effectiveness of HIV-specific cytotoxic T lymphocytes. Eur. J. Immunol. 32, 2644–2652 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Klenerman, P. & McMichael, A. J. HIV/AIDS. HLA leaves its footprints on HIV. Science 296, 1410–1411 (2002).

    Article  PubMed  Google Scholar 

  65. Goulder, P. J. R. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Klenerman, P. et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 369, 403–407 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Davenport, M. P. Antagonists or altruists: do viral mutants modulate T-cell responses? Immunol. Today 16, 432–436 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Klenerman, P. & Zinkernagel, R. M. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394, 482–485 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. McAdam, S. et al. Immunogenic HIV variant peptides that bind to HLA-B8 can fail to stimulate cytotoxic T lymphocyte responses. J. Immunol. 155, 2729–2736 (1995).

    CAS  PubMed  Google Scholar 

  70. Draenert, R. et al. Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. J. Exp. Med. 199, 905–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Allen, T. M. et al. Selection, transmission, and reversion of an antigen processing CTL escape mutation in HIV-1 Infection. J. Virol. 78, 7069–7078 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Yokomaku, Y. et al. Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection. J. Virol. 78, 1324–1332 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Le Gall, S. et al. Distinct trafficking pathways mediate Nef-induced and clathrin-dependent major histocompatibility complex class I down-regulation. J. Virol. 74, 9256–9266 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant Vβ usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Papagno, L. et al. Immune activation and CD8+ T cell differentiation towards senescence in HIV-1 infection. PLoS Biol. 2, 173–185 (2004).

    Article  CAS  Google Scholar 

  80. Migueles, S. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in non-progressors. Nature Immunol. 3, 1061–1068 (2002).

    Article  CAS  Google Scholar 

  81. Gray, R. H. et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357, 1149–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Gray, R. H. et al. Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission; Rakai, Uganda. AIDS 17, 1941–1951 (2003).

    Article  PubMed  Google Scholar 

  83. Garcia, P. M. et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. Women and Infants Transmission Study Group. N. Engl. J. Med. 341, 394–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Burton, D. R. et al. HIV vaccine design and the neutralizing antibody problem. Nature Immunol. 5, 233–236 (2004).

    Article  CAS  Google Scholar 

  85. Yewdell, J. W. & Bennink, J. R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17, 51–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Betts, M. M. et al. Lack of protection from HIV-1 infection by an HLA-B27-restricted anti-p24 Gag CD8+ T cell response induced by a recombinant HIV canarypox vaccine vector (vCP205). (Keystone Symposia, HIV Vaccine Development: Progress and Prospects, 12–18 April 2004) Abstract 205. (Whistler, Canada).

  87. Yang, O. O. Will we be able to 'spot' an effective HIV-1 vaccine? Trends Immunol. 24, 67–72 (2003).

    Article  PubMed  Google Scholar 

  88. Ranki, A. & Krohn, K. J. E. Expression kinetics and subcellular localization of HIV-1 regulatory proteins Nef, Tat, and Rev in acutely and chronically infected lymphoid cell lines. Arch. Virol. 139, 365–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Klotman, M. E. et al. Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proc. Natl Acad. Sci. USA 88, 5011–5015 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pomerantz, R. J., Trono, D., Feinberg, M. B. & Baltimore, D. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61, 1271–1276 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Ali, A. et al. Impacts of epitope expression kinetics and class I downregulation on the antiviral activity of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes. J. Virol. 78, 561–567 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ali, A., et al. Broadly increased sensitivity to cytotoxic T lymphocytes resulting from nef epitope escape mutations. J. Immunol. 171, 3999–4005 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Altfeld, M. et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 420, 434–439 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Rodriguez, F., Harkins, S., Slifka, M. K. & Whitton, J. L. Immunodominance in virus-induced CD8+ T-cell responses is dramatically modified by DNA immunization and is regulated by γ interferon. J. Virol. 76, 4251–4259 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Palmowski, M. J. et al. Competition between CTL narrows the immune response induced by prime–boost vaccination protocols. J. Immunol. 168, 4391–4398 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. O'Connor and T. Friedrich for constructive criticism of this manuscript. This work was supported by the Wellcome Trust (P.J.R.G.), the National Institutes of Health and the Doris Duke Charitable Foundation. P.J.R.G. and D.I.W. are Elizabeth Glaser Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. R. Goulder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CD4

CD8

Env

ERAAP

gag

HLA-A

HLA-B

HLA-C

Nef

Rev

TAP

tat

Vpr

Infectious Disease Information

HIV

Glossary

LONG-TERM NON-PROGRESSION

(LTNP). There is no universally adopted definition of LTNP, and often LTNP is used interchangeably with HIV controller, because control of viraemia is strongly predictive of LTNP. So, loosely, LTNP refers to HIV-infected individuals whose plasma viral load is less than 1,000 HIV RNA copies per ml. Stricter definitions of LTNP include the duration of infection and the number of CD4+ T cells.

PURIFYING SELECTION

Selection pressure that favours conservation of amino-acid sequence.

VIRAL FITNESS

Viral fitness is context specific, and it refers to the relative ability of a virus to replicate under particular conditions, such as those that occur when the immune response or antiretroviral therapy is acting on the virus. Viral fitness is only increased as a result of selection of escape mutants.

ANCHOR POSITION

Amino-acid residues of an antigenic peptide that bind in pockets in the peptide-binding groove of a MHC molecule. They account for much of the binding energy and specificity of binding.

REPLICATIVE CAPACITY

Replicative (or replication) capacity is an absolute measure of the ability of the virus to replicate under standard conditions, such as in an in vitro-assay system that compares, for example, the virus under study with a laboratory-adapted strain (such as NL4-3). Replicative capacity can be reduced by mutations that increase viral fitness.

ELISPOT

An antibody-capture-based method for enumerating specific T cells (CD4+ and CD8+) that secrete a particular cytokine (often interferon-γ).

TETRAMER STAINING

Biotinylated monomeric MHC molecules are folded in vitro together with a specific peptide that binds in the binding groove. These peptide–MHC complexes are then tetramerized using a fluorescently labelled streptavidin molecule. The tetramers bind T cells that express T-cell receptors specific for the cognate peptide–MHC complex. They can therefore be used to track antigen-specific T cells by flow cytometry.

SIMIAN–HUMAN IMMUNODEFICIENCY VIRUS

(SHIV). SHIVs are chimeric viruses that are created by inserting the envelope protein (Env), the transcriptional transactivator (Tat) and the regulator of virion gene expression (Rev) of HIV into the SIVMAC239 clone. Depending on the particular HIV Env protein, these SHIVs have different in vivo characteristics. The SHIV chimeric viruses are best used for testing antibodies specific for HIV in non-human primate models.

ORIGINAL ANTIGENIC SIN

A 'footprint' of immune responses is established during the first exposure to a virus, and the same specific memory T-cell populations are preferentially re-expanded when re-exposed to the same antigen, thereby limiting the clonal expansion of new specific T cells. A similar mechanism has been proposed for B-cell responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulder, P., Watkins, D. HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4, 630–640 (2004). https://doi.org/10.1038/nri1417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing