HIGHLIGHTS

HIGHLIGHT ADVISORS

CEZMI AKDIS

SWISS INSTITUTE OF ALLERGY AND ASTHMA RESEARCH, SWITZERLAND

BRUCE BEUTLER

SCRIPPS RESEARCH INSTITUTE, USA

PETER CRESSWELL YALE UNIVERSITY, USA

IAMES DI SANTO

PASTEUR INSTITUTE, FRANCE

GARY KORETZKY

PENNSYLVANIA, USA

CHARLES MACKAY

GARVAN INSTITUTE OF MEDICAL RESEARCH, AUSTRALIA

CORNELIS J. M. MELIEF

LEIDEN UNIVERSITY MEDICAL CENTRE, THE NETHERLANDS

MICHEL NUSSENZWEIG

THE ROCKEFELLER UNIVERSITY, USA

SARAH ROWLAND-JONES

CENTRE FOR TROPICAL MEDICINE, OXFORD, UK

ALAN SHER

NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASE, USA

ANDREAS STRASSER

THE WALTER AND ELIZA HALL INSTITUTE, AUSTRALIA

MEGAN SYKES

HARVARD MEDICAL SCHOOL, USA

ERIC VIVIER

CENTRE D'IMMUNOLOGIE DE MARSEILLE-LUMINY, FRANCE

MATTHIAS VON HERRATH

LA JOLLA INSTITUTE FOR ALLERGY AND IMMUNOLOGY, USA.

CO-STIMULATION

B7-H1: it's not all negative

Contrary to expectations, the 'coinhibitory' ligand B7-H1 has been shown to promote autoimmune T-cell responses in a mouse model of diabetes. This study, in *The Journal of Clinical Investigation*, indicates that it might be time for a re-think about the classification of this molecule.

Ligation of cognate receptors (such as PD1) on T cells by B7-H1 results in production of the regulatory cytokine interleukin-10 (IL-10), and many studies have supported the role of B7-H1 as an inhibitor of T-cell responses in *in vivo* tumour, transplant and autoimmune models. Subudhi *et al.* therefore hypothesized that expression of B7-H1 by pancreatic islet β -cells would prevent the T-cell-mediated destruction of these cells that occurs in autoimmune diabetes.

They created transgenic mice in which expression of B7-H1 is under the control of the rat insulin promoter (RIP.B7-H1 mice), and confirmed that B7-H1 is expressed by the same cells that produce insulin without affecting the level of insulin secretion, pancreas morphology or baseline immune-system parameters. Three systems were then used to investigate the effects of B7-H1 expression, with surprising results.

First, B7-H1-expressing pancreatic islets transplanted across minor histocompatibility antigen barriers into mice with chemically induced diabetes were rejected more rapidly than were control islets. This accelerated rejection could be prevented

using a blocking monoclonal antibody specific for B7-H1. Second, C57BL/6 mice are normally resistant to the induction of autoimmune diabetes by various means, but 14% of the transgenic mice on this background developed spontaneous diabetes by 6 weeks of age. Third, to study the autoimmune antigenspecific T-cell response more easily, double-transgenic mice were created expressing both B7-H1 and membrane-bound ovalbumin (RIP.B7-H1/mOVA mice). After transfer of OVA-specific CD8+ T cells, the number of dividing T cells recovered from pancreas-draining lymph nodes was significantly greater in RIP.B7-H1/mOVA recipients than in RIP.mOVA recipients. The increased proliferative response in RIP.B7-H1/mOVA mice could be inhibited by an antibody specific for B7-H1, and T-cell proliferation in RIP.mOVA mice could be increased using a B7-H1-immunoglobulin fusion protein. All of these results lead to the conclusion that B7-H1 can co-stimulate T-cell responses in vivo and promote the spontaneous development of autoimmune disease. This extends a previous study showing that blockade of B7-H1 can inhibit experimentally induced autoimmunity (see further reading).

How does this study tie in with the previous contradictory findings? The authors suggest that B7-H1 might have different roles depending on the nature and stage of disease pathogenesis — another

example of the complexity of immune interactions *in vivo*, which needs to be explored further.

Kirsty Minton Constant Action Constant Action