Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Death-defying immunity: do apoptotic cells influence antigen processing and presentation?

Abstract

The clearance of apoptotic cells has been paid much attention for its role not only in tissue homeostasis, but also as a source of antigen for immune tolerance and activation. The complexity of this process has been borne out by the many receptor families and signalling pathways involved; however, an important aspect of the biology has so far been overlooked. This article explores the possible immunological instructions that are delivered by dying cells, as influenced by the specific execution pathways that are active during programmed cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indirect and direct effects of dying cells on the phagocytes that engulf them.
Figure 2: Apoptotic cells captured in the periphery by dendritic cells serve as a source of antigen for the tolerization and activation of CD8+ T-cell responses.
Figure 3: An active role for apoptotic cells in the transfer of antigen to dendritic cells.

Similar content being viewed by others

References

  1. Virchow, R. In Cellular Pathology. (Birmingham: The Classics of Medicine Library, Birmingham, 1978).

    Google Scholar 

  2. Raff, M. Cell suicide for beginners. Nature 396, 119–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  4. Zimmermann, K. C. & Green, D. R. How cells die: apoptosis pathways. J. Allergy Clin. Immunol. 108, S99–S103 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  8. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. & Earnshaw, W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Sakahira, H., Enari, M. & Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Rovere, P. et al. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161, 4467–4471 (1998).

    CAS  PubMed  Google Scholar 

  15. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Stuart, L. M. et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J. Immunol. 168, 1627–1635 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Dressler, K. A., Mathias, S. & Kolesnick, R. N. Tumor necrosis factor-α activates the sphingomyelin signal transduction pathway in a cell-free system. Science 255, 1715–1718 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Kolesnick, R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3–8 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hla, T. et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem. Pharmacol. 58, 201–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nature Med. 4, 1321–1324 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hugues, S. et al. Tolerance to islet antigens and prevention from diabetes induced by limited apoptosis of pancreatic β cells. Immunity 16, 169–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Schulz, O. & Reis e Sousa, C. Cross-presentation of cell-associated antigens by CD8α+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107, 183–189 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belz, G. T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Turley, S., Poirot, L., Hattori, M., Benoist, C. & Mathis, D. Physiological β-cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med. 198, 1527–1537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nature Cell Biol. 1, 362–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Guermonprez, P. et al. ER–phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Desjardins, M. ER-mediated phagocytosis: a new membrane for new functions. Nature Rev. Immunol. 3, 280–291 (2003).

    Article  CAS  Google Scholar 

  36. Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Med. 4, 581–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Fonteneau, J. F. et al. Characterization of the MHC class I crosspresentation pathway for cell associated antigens by human dendritic cells. Blood 102, 4448–4455 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Larsson, M. et al. Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. Eur. J. Immunol. 31, 3432–3442 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Scheffer, S. R. et al. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int. J. Cancer 103, 205–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nature Rev. Immunol. 2, 185–194 (2002).

    Article  CAS  Google Scholar 

  41. Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12, 1539–1546 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Pooley, J. L., Heath, W. R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4+ T cells by CD8 dendritic cells, but cross-presented to CD8+ T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Binder, R. J., Han, D. K. & Srivastava, P. K. CD91: a receptor for heat shock protein gp96. Nature Immunol. 1, 151–155 (2000).

    Article  CAS  Google Scholar 

  44. Miesenbock, G. & Rothman, J. E. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J. Cell Biol. 129, 309–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Johannes, L. & Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8, 158–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Majoul, I. et al. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol. 143, 601–612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol. 2, 1010–1017 (2001).

    Article  CAS  Google Scholar 

  51. Kurts, C. et al. CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl Acad. Sci. USA 96, 12703–12707 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspase knockouts: matters of life and death. Cell Death Differ. 6, 1043–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Zimmermann, K. C., Bonzon, C. & Green, D. R. The machinery of programmed cell death. Pharmacol. Ther. 92, 57–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nature Rev. Mol. Cell Biol. 4, 95–104 (2003).

    Article  CAS  Google Scholar 

  56. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Sansonetti, P. J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12, 581–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Kroemer, G. & Martinez, C. Pharmacological inhibition of programmed lymphocyte death. Immunol. Today 15, 235–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Rev. Immunol. 2, 735–747 (2002).

    Article  CAS  Google Scholar 

  60. Goping, I. S. et al. Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition. Immunity 18, 355–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Metkar, S. S. et al. Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J. Cell Biol. 160, 875–885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andrade, F. et al. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 8, 451–460 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Casciola-Rosen, L., Andrade, F., Ulanet, D., Wong, W. B. & Rosen, A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med. 190, 815–826 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matzinger, P. An innate sense of danger. Ann. NY Acad. Sci. 961, 341–342 (2002).

    Article  PubMed  Google Scholar 

  66. Yang, H., Wang, H. & Tracey, K. J. HMG-1 rediscovered as a cytokine. Shock 15, 247–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt, A. M., Yan, S. D., Yan, S. F. & Stern, D. M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108, 949–955 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Blachere, N. E. et al. Heat shock protein–peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1315–1322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Udono, H. & Srivastava, P. K. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol. 152, 5398–5403 (1994).

    CAS  PubMed  Google Scholar 

  72. Somersan, S. et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J. Immunol. 167, 4844–4852 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Perfettini, J. L. & Kroemer, G. Caspase activation is not death. Nature Immunol. 4, 308–310 (2003).

    Article  CAS  Google Scholar 

  76. Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C. & Brouckaert, P. Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2 . Nature Immunol. 4, 387–393 (2003).

    Article  CAS  Google Scholar 

  77. Buss, L. The Evolution of Individuality. (Princeton University Press, Princeton, New Jersey, 1987).

    Google Scholar 

  78. Ameisen, J. C. The origin of programmed cell death. Science 272, 1278–1279 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Ameisen, J. C. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ. 9, 367–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Cikala, M., Wilm, B., Hobmayer, E., Bottger, A. & David, C. N. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr. Biol. 9, 959–962 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Bosch, T. C. & David, C. N. Growth regulation in Hydra: relationship between epithelial cell cycle length and growth rate. Dev. Biol. 104, 161–171 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to those whose work I have failed to cite. Special thanks to J. C. Ameisen, S. Amigorena, N. Blachère, R. Darnell, N. Hacohen, R. Longman, M. Lotze, C. Maliszewski, P. Matzinger, G. Milon, D. Philpott, P. Srivastava and B. van Steensel for their insights on death, and for the late night dinners and missed trains.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

α2-M

calreticulin

caspase-1

caspase-3

CD36

CD91

CD95

EDG1

granzyme B

GP96

HMGB1

IL-1β

IL-12

IL-18

NALP1

RAGE

TGF-β1

TLR4

TNF

FURTHER INFORMATION

The Institute Pasteur

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, M. Death-defying immunity: do apoptotic cells influence antigen processing and presentation?. Nat Rev Immunol 4, 223–231 (2004). https://doi.org/10.1038/nri11308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri11308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing