Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future

Key Points

  • MHC class I molecules can interact with the T-cell receptor complex, CD8 dimers as well as with inhibitory MHC class I receptors. These inhibitory MHC class I receptors belong to the immunoglobulin-like family in humans — killer cell immunoglobulin-like receptors (KIRs) and leukocyte immunoglobulin-like receptors (LIRs) — or to the lectin-like family in mice (Ly49 molecules) or in both species (CD94/NKG2A). They were initially described on natural killer (NK) cells, and also include killer cell lectin-like receptor subfamily G1 (KLRG1), to form a group of inhibitory NK-cell receptors (iNKRs).

  • iNKRs can be expressed by memory phenotype CD8+αβ-T-cell receptor (αβ-TCR)+ T cells, where they increase the threshold of activation leading to the fine tuning of T-cell effector function (cytotoxicity and cytokine secretion). The negative control mediated by iNKRs on T cells is not absolute, but rather varies with the strength of T-cell stimulation as well as the T-cell activation status.

  • iNKRs can also antagonize activation-induced cell death, leading to the survival of T-cell subsets.

  • The cell-surface expression of iNKRs correlates with various stages of CD8+ T-cell differentiation. The HLA-E-specific receptor complex CD94/NKG2 can be readily expressed at the T-cell surface after antigenic challenge, whereas KIR and Ly49 expression is restricted to T-cell subsets with an effector/effector-memory phenotype.

  • The role of iNKRs in NK-cell self-tolerance prompts the future exploration of iNKRs in the control of peripheral T-cell tolerance.

Abstract

Inhibitory MHC class I receptors were initially described on natural killer (NK) cells, where they participate in inducing NK-cell self-tolerance. Inhibitory NK-cell receptors (iNKRs) can also be expressed by diverse T-cell subsets, including NKT cells, CD8+αβ-T-cell receptor (αβ-TCR)+ T cells, CD4+αβ-TCR+ T cells and γδ-TCR+ T cells. Here, we review the factors and the differentiation programme associated with the expression of iNKRs by αβ-TCR+ T cells, as well as the consequences of iNKR expression on T-cell function. A selective model for the induction of iNKR+ T cells is discussed, based on the stochastic expression of various iNKRs by the progeny of a single T-cell clone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibitory natural-killer-cell receptors expressed by T-cell subsets.
Figure 2: Signalling pathways initiated by killer cell immunoglobulin-like receptors (KIRs) in T cells.
Figure 3: Hypothetical selective model of KIR+ T-cell induction.

Similar content being viewed by others

References

  1. Moretta, A., Bottino, C., Mingari, M. C., Biassoni, R. & Moretta, L. What is a natural killer cell? Nature Immunol. 3, 6–8 (2002).

    Article  CAS  Google Scholar 

  2. Ljunggren, H. -G. & Kärre, K. In research of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today. 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Vivier, E. & Daëron, M. Immunoreceptor tyrosine-based inhibition motifs (ITIMs). Immunol. Today. 18, 286–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Long, E. O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Vély, F. & Vivier, E. Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and non-inhibitory/activatory counterparts. J. Immunol. 159, 2075–2077 (1997).

    PubMed  Google Scholar 

  6. Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Moretta, A. et al. Identification of four subsets of human CD3CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J. Exp. Med. 172, 1589–1598 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Ferrini, S. et al. T cell clones expressing the natural killer cell-related p58 receptor molecule display heterogeneity in phenotypic properties and p58 function. Eur. J. Immunol. 24, 2294–2298 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Phillips, J. H., Gumperz, J. E., Parham, P. & Lanier, L. L. Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science 268, 403–405 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bagot, M. et al. CD4+ cutaneous T-cell lymphoma cells express the p140-killer cell immunoglobulin-like receptor. Blood 97, 1388–1391 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Snyder, M. R., Weyand, C. M. & Goronzy, J. J. The double life of NK receptors: stimulation or co-stimulation. Trends Immunol. 25, 25–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mingari, M. C. et al. HLA-class I-specific inhibitory receptors in human cytolytic T lymphocytes: molecular characterization, distribution in lymphoid tissues and co-expression by individual T cells. Int. Immunol. 9, 485–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Anfossi, N., Pascal, V., Vivier, E. & Ugolini, S. Biology of T memory type 1 cells. Immunol. Rev. 181, 269–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Uhrberg, M. et al. The repertoire of killer cell Ig-like receptor and CD94:NKG2A receptors in T cells: clones sharing identical αβ TCR rearrangement express highly diverse killer cell Ig-like receptor patterns. J. Immunol. 166, 3923–3932 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Vely, F. et al. Regulation of inhibitory and activating killer-cell Ig-like receptor expression occurs in T cells after termination of TCR rearrangements. J. Immunol. 166, 2487–2494 (2001). Together with references 15 and 17, this article reports that various combinations of receptors can be expressed by the progeny of a single T-cell clone, showing the acquisition of killer cell immunoglobulin-like receptor (KIR) expression after T-cell receptor (TCR) rearrangement and illustrating clonal T-cell heterogeneity based on the expression of inhibitory natural-killer-cell receptors (iNKRs).

    Article  CAS  PubMed  Google Scholar 

  17. Snyder, M. R. et al. Formation of the killer Ig-like receptor repertoire on CD4+CD28 T cells. J. Immunol. 168, 3839–3846 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Mingari, M. C. et al. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc. Natl Acad. Sci. USA 93, 12433–12438 (1996). This is the first demonstration that KIR+ T cells represent oligoclonal expansions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Speiser, D. E. et al. CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. Eur. J. Immunol. 29, 1990–1999 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Young, N. T., Uhrberg, M., Phillips, J. H., Lanier, L. L. & Parham, P. Differential expression of leukocyte receptor complex-encoded Ig-like receptors correlates with the transition from effector to memory CTL. J. Immunol. 166, 3933–3941 (2001). This article proposes a sequential acquisition of leukocyte immunoglobulin-like receptor 1 (LIR1) expression, then KIR expression by CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  21. Willcox, B. E., Thomas, L. M. & Bjorkman, P. J. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nature Immunol. 4, 913–919 (2003).

    Article  CAS  Google Scholar 

  22. Pittet, M. J., Speiser, D. E., Valmori, D., Cerottini, J. C. & Romero, P. Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J. Immunol. 164, 1148–1152 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Baars, P. A. et al. Cytolytic mechanisms and expression of activation-regulating receptors on effector-type CD8+CD45RA+CD27 human T cells. J. Immunol. 165, 1910–1917 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8+ T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kuijpers, T. W. et al. Frequencies of circulating cytolytic, CD45RA+CD27, CD8+ T lymphocytes depend on infection with CMV. J. Immunol. 170, 4342–4348 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Rufer, N. et al. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102, 1779–1787 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Falk, C. A., Steinle, A. & Schendel, D. J. Expression of HLA-C molecules confers target cell resistance to some non-major histocompatibility complex-restricted T cells in a manner analogous to allospecific natural killer cells. J. Exp. Med. 182, 1005–1018 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Mingari, M. C. et al. Cytolytic T lymphocytes displaying natural killer (NK)-like activity: expression of NK-related functional receptors for HLA class I molecules (p58 and CD94) and inhibitory effect on the TCR-mediated target cell lysis or lymphokine production. Int. Immunol. 7, 697–703 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Pietra, G. et al. The analysis of the natural killer-like activity of human cytolytic T lymphocytes revealed HLA-E as a novel target for TCR α/β-mediated recognition. Eur. J. Immunol. 31, 3687–3693 (2001). Together with references 32 and 33, this article characterizes NK-cytotoxic T lymphocytes (NK-CTLs) — the subset of iNKR+ T cells that are HLA-E restricted.

    Article  CAS  PubMed  Google Scholar 

  32. Romagnani, C. et al. Identification of HLA-E-specific alloreactive T lymphocytes: a cell subset that undergoes preferential expansion in mixed lymphocyte culture and displays a broad cytolytic activity against allogeneic cells. Proc. Natl Acad. Sci. USA 99, 11328–11333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pietra, G. et al. HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc. Natl Acad. Sci. USA 100, 10896–10901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Maria, A. et al. Expression of HLA class I-specific inhibitory natural killer cell receptors in HIV-specific cytolytic T lymphocytes: impairment of specific cytolytic functions. Proc. Natl Acad. Sci. USA 94, 10285–10288 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D'Andrea, A., Chang, C., Phillips, J. H. & Lanier, L. L. Regulation of T cell lymphokine production by killer cell inhibitory receptor recognition of self HLA class I alleles. J. Exp. Med. 184, 789–794 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda, H. et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6, 199–208 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Colonna, M. et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J. Exp. Med. 186, 1809–1818 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bakker, A. B., Phillips, J. H., Figdor, C. G. & Lanier, L. L. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, γδ T cells, and antigen-specific CTL. J. Immunol. 160, 5239–5245 (1998).

    CAS  PubMed  Google Scholar 

  39. Guerra, N. et al. Killer inhibitory receptor (CD158b) modulates the lytic activity of tumor-specific T lymphocytes infiltrating renal cell carcinomas. Blood 95, 2883–2889 (2000).

    CAS  PubMed  Google Scholar 

  40. Saverino, D. et al. The CD85/LIR-1/ILT2 inhibitory receptor is expressed by all human T lymphocytes and downregulates their functions. J. Immunol. 165, 3742–3755 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Dietrich, J., Cella, M. & Colonna, M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J. Immunol. 166, 2514–2521 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Guerra, N. et al. Engagement of the inhibitory receptor CD158a interrupts TCR signaling, preventing dynamic membrane reorganization in CTL/tumor cell interaction. Blood 100, 2874–2881 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Cambiaggi, A. et al. Modulation of T-cell functions in KIR2DL3 (CD158b) transgenic mice. Blood 94, 2396–2402 (1999).

    CAS  PubMed  Google Scholar 

  44. Ugolini, S. et al. Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nature Immunol. 2, 430–435 (2001). This is the first demonstration that iNKRs, such as KIRs, can be involved in the survival of subsets of memory phenotype T cells.

    Article  CAS  Google Scholar 

  45. Chwae, Y. J. et al. Molecular mechanism of the activation-induced cell death inhibition mediated by a p70 inhibitory killer cell Ig-like receptor in Jurkat T cells. J. Immunol. 169, 3726–3735 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Marti, F. et al. LCK-phosphorylated human killer cell-inhibitory receptors recruit and activate phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 95, 11810–11815 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gati, A. et al. CD158 receptor controls cytotoxic T-lymphocyte susceptibility to tumor-mediated activation-induced cell death by interfering with Fas signaling. Cancer Res. 63, 7475–7482 (2003).

    CAS  PubMed  Google Scholar 

  48. Wende, H., Colonna, M., Ziegler, A. & Volz, A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13. 4. Mamm. Genome 10, 154–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Trowsdale, J. Genetic and functional relationships between MHC and NK receptor genes. Immunity 15, 363–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Stewart, C. A., Van Bergen, J. & Trowsdale, J. Different and divergent regulation of the KIR2DL4 and KIR3DL1 promoters. J. Immunol. 170, 6073–6081 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Santourlidis, S. et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J. Immunol. 169, 4253–4261 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Chan, H. W. et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J. Exp. Med. 197, 245–255 (2003). Together with reference 51, this article reports the methylation pattern that determines KIR gene expression.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gumperz, J. E., Valiante, N. M., Parham, P., Lanier, L. L. & Tyan, D. Heterogeneous phenotypes of expression of the NKB1 natural killer cell class I receptor among individuals of different human histocompatibility leukocyte antigens types appear genetically regulated, but not linked to major histocompatibility complex haplotype. J. Exp. Med. 183, 1817–1827 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Huard, B. & Karlsson, L. KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature 403, 325–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Sivori, S. et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur. J. Immunol. 33, 3439–3447 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Speiser, D. E. et al. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J. Exp. Med. 190, 775–782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berg, L. et al. LIR-1 expression on lymphocytes, and cytomegalovirus disease in lung-transplant recipients. Lancet 361, 1099–1101 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Ortaldo, J., Winkler-Pickett, R., Mason, A. T. & Mason, L. H. The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J. Immunol. 160, 1158–1165 (1998).

    CAS  PubMed  Google Scholar 

  60. Coles, M. C., McMahon, C. W., Takizawa, H. & Raulet, D. H. Memory CD8+ T lymphocytes express inhibitory MHC-specific Ly49 receptors. Eur. J. Immunol. 30, 236–244 (2000). This is the first extensive characterization of Ly49+CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  61. Zajac, A. J. et al. Impaired anti-viral T cell responses due to expression of the Ly49A inhibitory receptor. J. Immunol. 163, 5526–5534 (1999).

    CAS  PubMed  Google Scholar 

  62. Pauza, M. et al. Transgenic expression of Ly-49A in thymocytes alters repertoire selection. J. Immunol. 164, 884–892 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Fahlen, L. et al. Ly49A expression on T cells alters T cell selection. Int. Immunol. 12, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Hanke, T. & Raulet, D. H. Cumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptors. J. Immunol. 166, 3002–3007 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Peacock, C. D., Xu, W., Stepp, S. E. & Welsh, R. M. Dynamics of Ly49 expressing cytotoxic lymphocyte subsets in response to virus infection. Microbes Infect. 4, 1481–1490 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. McMahon, C. W. et al. Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8+ T cells. J. Immunol. 169, 1444–1452 (2002). The first complete demonstration of the lack of Ly49 expression by T cells during the course of microbial infection.

    Article  CAS  PubMed  Google Scholar 

  67. Roger, J., Chalifour, A., Lemieux, S. & Duplay, P. Cutting edge: Ly49A inhibits TCR/CD3-induced apoptosis and IL-2 secretion. J. Immunol. 167, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Assarsson, E. et al. CD8+ T cells rapidly acquire NK1. 1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J. Immunol. 165, 3673–3679 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Kambayashi, T. et al. Emergence of CD8+ T cells expressing NK cell receptors in influenza A virus-infected mice. J. Immunol. 165, 4964–4969 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Halary, F. et al. Control of self-reactive cytotoxic T lymphocytes expressing γδ T cell receptors by natural killer inhibitory receptors. Eur. J. Immunol. 27, 2812–2821 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  72. Hanke, T. et al. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11, 67–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Judge, A. D., Zhang, X., Fujii, H., Surh, C. D. & Sprent, J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J. Exp. Med. 196, 935–946 (2002). The first demonstration of the interleukin-15 (IL-15) sensitivity of Ly49+CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berard, M., Brandt, K., Paus, S. B. & Tough, D. F. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J. Immunol. 170, 5018–5026 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Wilhelm, B. T., McQueen, K. L., Freeman, J. D., Takei, F. & Mager, D. L. Comparative analysis of the promoter regions and transcriptional start sites of mouse Ly49 genes. Immunogenetics 53, 215–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J. Exp. Med. 188, 1841–1848 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mingari, M. C. et al. HLA class I-specific inhibitory receptors in human T lymphocytes: interleukin-15 induced expression of CD94/NKG2A in superantigen- or alloantigen-activated CD8+ T cells. Proc. Natl Acad. Sci USA 95, 1172–1177 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bertone, S. et al. Transforming growth factor-β induced expression of CD94/NKG2A inhibitory receptors in human T lymphocytes. Eur. J. Immunol. 29, 23–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Derre, L. et al. Expression of CD94/NKG2-A on human T lymphocytes is induced by IL-12: implications for adoptive immunotherapy. J. Immunol. 168, 4864–4870 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Andre, P. et al. Differential regulation of killer cell Ig-like receptors and CD94 lectin-like dimers on NK and T lymphocytes from HIV-1-infected individuals. Eur. J. Immunol. 29, 1076–1085 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Jabri, B. et al. TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 17, 487–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Le Dréan, E. et al. Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur. J. Immunol. 28, 264–276 (1998).

    Article  PubMed  Google Scholar 

  84. Dulphy, N. et al. Functional modulation of expanded CD8+ synovial fluid T cells by NK cell receptor expression in HLA-B27-associated reactive arthritis. Int. Immunol. 14, 471–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Perrin, G. et al. Sister cytotoxic CD8+ T cell clones differing in natural killer inhibitory receptor expression in human astrocytoma. Immunol. Lett. 81, 125–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Malmberg, K. J. et al. IFN-γ protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J. Clin. Invest. 110, 1515–1523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lohwasser, S., Kubota, A., Salcedo, M., Lian, R. H. & Takei, F. The non-classical MHC class I molecule Qa-1(b) inhibits classical MHC class I-restricted cytotoxicity of cytotoxic T lymphocytes. Int. Immunol. 13, 321–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Van Beneden, K. et al. Expression of inhibitory receptors Ly49E and CD94/NKG2 on fetal thymic and adult epidermal TCR Vγ3 lymphocytes. J. Immunol. 168, 3295–3302 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Moser, J. M., Gibbs, J., Jensen, P. E. & Lukacher, A. E. CD94/NKG2A receptors regulate antiviral CD8+ T cell responses. Nature Immunol. 3, 189–195 (2002).

    Article  CAS  Google Scholar 

  90. Miller, J. D. et al. CD94/NKG2 expression does not inhibit cytotoxic function of lymphocytic choriomeningitis virus-specific CD8+ T cells. J. Immunol. 169, 693–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Vales-Gomez, M., Reyburn, H. T., Erskine, R. A., Lopez-Botet, M. & Strominger, J. L. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J. 18, 4250–4260 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kraft, J. R. et al. Analysis of Qa-1(b) peptide binding specificity and the capacity of CD94/NKG2A to discriminate between Qa-1-peptide complexes. J. Exp. Med. 192, 613–624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Michaelsson, J. et al. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J. Exp. Med. 196, 1403–1414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heinzel, A. S. et al. HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J. Exp. Med. 196, 1473–1481 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Ulbrecht, M. et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol. 164, 5019–5022 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Abramson, J., Xu, R. & Pecht, I. An unusual inhibitory receptor — the mast cell function-associated antigen (MAFA). Mol. Immunol. 38, 1307–1313 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Guthmann, M. D., Tal, M. & Pecht, I. A secretion inhibitory signal transduction molecule on mast cells is another C-type lectin. Proc. Natl Acad. Sci. USA 92, 9397–9401 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Voehringer, D., Kaufmann, M. & Pircher, H. Genomic structure, alternative splicing, and physical mapping of the killer cell lectin-like receptor G1 gene (KLRG1), the mouse homologue of MAFA. Immunogenetics 52, 206–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Butcher, S., Arney, K. L. & Cook, G. P. MAFA-L, an ITIM-containing receptor encoded by the human NK cell gene complex and expressed by basophils and NK cells. Eur. J. Immunol. 28, 3755–3762 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Corral, L., Hanke, T., Vance, R. E., Cado, D. & Raulet, D. H. NK cell expression of the killer cell lectin-like receptor G1 (KLRG1), the mouse homolog of MAFA, is modulated by MHC class I molecules. Eur. J. Immunol. 30, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Voehringer, D., Koschella, M. & Pircher, H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectin-like receptor G1 (KLRG1). Blood 100, 3698–3702 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Beyersdorf, N. B., Ding, X., Karp, K. & Hanke, T. Expression of inhibitory killer cell lectin-like receptor G1 identifies unique subpopulations of effector and memory CD8+ T cells. Eur. J. Immunol. 31, 3443–3452 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Voehringer, D. et al. Viral infections induce abundant numbers of senescent CD8+ T cells. J. Immunol. 167, 4838–4843 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Robbins, S. H., Terrizzi, S. C., Sydora, B. C., Mikayama, T. & Brossay, L. Differential regulation of killer cell lectin-like receptor G1 expression on T cells. J. Immunol. 170, 5876–5885 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Bléry, M. et al. Reconstituted killer-cell inhibitory receptors for MHC class-I molecules control mast cell activation induced via immunoreceptor tyrosine-based activation motifs. J. Biol. Chem. 272, 8989–8996 (1997).

    Article  PubMed  Google Scholar 

  107. Ortaldo, J. R. & Young, H. A. Expression of IFN-γ upon triggering of activating Ly49D NK receptors in vitro and in vivo: co-stimulation with IL-12 or IL-18 overrides inhibitory receptors. J. Immunol. 170, 1763–1769 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Brossay (Brown University), S. Ugolini (CIML), A. Venet (Kremlin-Bicêtre) and D. Raulet (Berkeley) for their advice. E.V. is supported by the INSERM, CNRS and Université de la Méditerranée, as well as by La Ligue Nationale contre le Cancer (Equipe Labellisée “La Ligne”). N.A. is supported by the Ministère de la Recherche and the Association pour la Recherche contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vivier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCR7

CD4

CD8

CD27

CD28

CD34

CD56

CD94

CD95

CD95L

DAP12

HSP60

IFN-γ

IL-2

IL-4

IL-15

IL-21

KIR2DL3

KIR2DL4

KIR3DL2

KLRG1

LIR1

Ly49f

NKG2A

Nkrp1c

PKCα

SHP1

TNF

FURTHER INFORMATION

Eric Vivier's lab

Glossary

IMMUNORECEPTOR TYROSINE-BASED INHIBITORY MOTIF

(ITIM). A structural motif containing tyrosine residues that is found in the cytoplasmic tail of several inhibitory receptors. The prototype six-amino-acid ITIM sequence is (Ile/Val/Leu/Ser)-Xaa-Tyr-Xaa-Xaa-(Leu/Val). Ligand-induced clustering of these inhibitory receptors results in tyrosine phosphorylation, often by SRC-family tyrosine kinases, which provides a docking site for the recruitment of cytoplasmic phosphatases that have an SH2 domain.

IMMUNORECEPTOR TYROSINE-BASED ACTIVATION MOTIF

(ITAM). B-, T- and natural killer (NK)-cell activating receptors are non-covalently associated with transmembrane proteins that contain one or more ITAMs. The structural motif (Asp/Glu-Xaa-Xaa-Tyr-Xaa-Xaa-Leu/Ile-Xaa(6–8)-Tyr-Xaa-Xaa-Leu/Ile) is tyrosine phosphorylated after ligation of the ligand-binding subunits, which triggers a cascade of intracellular events that result in cell activation.

NKT-CELL SUBSET

A heterogeneous subset of T cells the majority of which express semi-invariant T-cell receptors. In mice, NKT cells were first identified by their expression of the NK1.1 (Nkrp1c) cell-surface molecule.

γδ-TCR+ T CELLS

Unconventional T cells that express a T-cell receptor (TCR) composed of γ- and δ-subunits.

MONOMORPHIC α3 DOMAIN

The extracellular region of MHC class I molecules is composed of three domains known as α1, α2 and α3. Whereas the membrane distal α1 and α2 domains are polymorphic and form the peptide-binding groove, the membrane proximal α3 domain is well conserved among different MHC class I alleles.

HLA-E

One of the non-classical MHC class Ib molecules characterized by limited polymorphism. HLA-E preferentially assembles with a homologous set of peptides derived from the leader sequence of classical MHC class Ia molecules, but its capacity to bind and present other peptides is currently unravelling. HLA-E has also been shown to be the main ligand of CD94/NKG2A heterodimers expressed by natural killer cells and T cells.

LEUKOCYTE RECEPTOR COMPLEX

(LRC). The human LRC, localized in the q13.4 region of chromosome 19, is a cluster of genes encoding molecules that belong to the immunoglobulin family and encompasses the KIR and LIR loci.

VARIEGATION

Mechanisms that lead to different expression patterns of a particular gene cluster.

TCR-Vβ

The hypervariable region of the T-cell receptor (TCR) β-subunit. As this region is mainly implicated in the recognition of antigens, mutations that affect TCR-Vβ allow diversity of the T-cell repertoire.

MULTIGENIC AND MULTIALLELIC FAMILY

A family of molecules encoded by many different genes. For each particular locus, many different allelic forms have been described.

QA-1

This is the mouse homologue of HLA-E and so is a non-classical MHC class Ib molecule. It preferentially assembles with the Qa-1 determinant modifier (Qdm) peptide derived from the leader sequence of classical MHC class Ia molecules, but has the capacity to bind and present other peptides. Similar to HLA-E, Qa-1 is the main ligand of CD94/NKG2A heterodimers expressed by mouse natural killer cells and T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivier, E., Anfossi, N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4, 190–198 (2004). https://doi.org/10.1038/nri1306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing