Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogens: raft hijackers

Key Points

  • Lipid rafts are liquid-ordered membranes, enriched in cholesterol and sphingolipids, that can selectively incorporate or exclude proteins. This allows them to regulate many protein–protein and lipid–protein interactions at the cell surface.

  • Lipid rafts function as concentration points for B- and T-cell receptor signalling, contributing to the adaptive immune response against pathogens. By organizing signalling downstream of Toll-like receptors, lipid rafts are also involved in the innate immune response.

  • Despite the role of rafts in the activation of the immune system, many viruses, bacteria and protozoan parasites can use these host microdomains to infect target cells.

  • Intracellular pathogens hijack host rafts to find gateways for entry into the cell, to create sheltered environments in which to replicate, to prevent host immune responses by taking over signalling pathways or to generate areas in which new pathogens can be assembled efficiently.

  • Several pathogens, of which HIV and Epstein–Barr virus are well-studied examples, have strategies to subvert raft-associated signalling. This enables their efficient replication in immune cells while blocking the immune response that is elicited by the target cells.

  • Molecular dissection of the mechanisms by which microorganisms hijack host raft domains will provide new therapeutic insights for the prevention and/or treatment of certain infectious diseases.

Abstract

Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts — dynamic microdomains that are enriched in cholesterol and glycosphingolipids — that facilitate many protein–protein and lipid–protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rafts can control membrane-protein interactions.
Figure 2: Membrane rafts in bacterial entry and survival.
Figure 3: Membrane rafts in entry of viruses.
Figure 4: Membrane rafts in protozoan pathogenesis.

Similar content being viewed by others

References

  1. Brown, D. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).

    CAS  PubMed  Google Scholar 

  2. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  Google Scholar 

  3. Pierce, S. Lipid rafts and B-cell activation. Nature Rev. Immunol. 2, 96–105 (2002).

    CAS  Google Scholar 

  4. Simons, K. & Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pizzo, P. & Viola, A. Lymphocyte lipid rafts: structure and function. Curr. Opin. Immunol. 15, 255–260 (2003). References 1–5 are reviews that describe the importance of understanding what rafts are and how these microdomains modulate signalling through clonally distributed receptors in lymphocytes.

    CAS  PubMed  Google Scholar 

  6. van der Goot, F. & Harder, T. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol. 13, 89–97 (2001).

    CAS  PubMed  Google Scholar 

  7. Rosenberger, C., Brumell, J. & Finlay, B. Microbial pathogenesis: lipid rafts as pathogen portals. Curr. Biol. 10, R823–R825 (2000).

    CAS  PubMed  Google Scholar 

  8. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998). The first paper to show that clusters of rafts segregate from non-raft assemblies.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miceli, M. et al. Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Semin. Immunol. 13, 115–128 (2001).

    CAS  PubMed  Google Scholar 

  10. Drevot, P. et al. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo, B., Kato, R., Garcia-Lloret, M., Wahl, M. & Rawlings, D. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    CAS  PubMed  Google Scholar 

  12. Triantafilou, M., Miyake, K., Golenbock, D. & Triantafilou, K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell. Sci. 115, 2603–2611 (2002).

    CAS  PubMed  Google Scholar 

  13. Beutler, B. & Rietschel, E. Innate immune sensing and its roots: the story of endotoxin. Nature Rev. Immunol. 3, 169–176 (2003).

    CAS  Google Scholar 

  14. Alfsen, A., Iniguez, P., Bouguyon, E. & Bomsel, M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166, 6257–6265 (2001).

    CAS  PubMed  Google Scholar 

  15. Mañes, S. et al. Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep. 1, 190–196 (2000).

    PubMed  PubMed Central  Google Scholar 

  16. Peterlin, B. & Trono, D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nature Rev. Immunol. 3, 97–107 (2003).

    CAS  Google Scholar 

  17. Nguyen, D. & Hildreth, J. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipidenriched membrane lipid rafts. J. Virol. 74, 3264–3272 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, N. et al. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76, 6689–6700 (2002). References 14–18 describe the crucial role of rafts at distinct stages during the HIV-1 life cycle in immune and non-immune cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Selvarangan, R. et al. Role of decay-accelerating factor domains and anchorage in internalization of Dr-Fimbriated Escherichia coli. Infect. Immun. 68, 1391–1399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Peiffer, I., Servin, A. & Bernet-Camard, M. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells. Infect. Immun. 66, 4036–4042 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stuart, A., Eustace, H., McKee, T. & Brown, T. A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J. Virol. 76, 9307–9322 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Oliferenko, S. et al. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J. Cell Biol. 146, 843–854 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Desjardins, M. ER-mediated phagocytosis: a new membrane for new functions. Nature Rev. Immunol. 3, 280–291 (2003).

    CAS  Google Scholar 

  24. Gatfield, J. & Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288, 1647–1650 (2000). This paper and reference 31 were the first to show the role of lipid rafts in promoting the intracellular survival of bacteria.

    CAS  PubMed  Google Scholar 

  25. Peyron, P., Bordier, C., N'Diaye, E. & Maridonneau-Parini, I. Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J. Immunol. 165, 5186–5191 (2000).

    CAS  PubMed  Google Scholar 

  26. Naroeni, A. & Porte, F. Role of cholesterol and the ganglioside GM1 in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 70, 1640–1644 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Watarai, M. et al. Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. Infect. Immun. 70, 4818–4825 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Watarai, M. et al. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med. 194, 1081–1096 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, S., Watarai, M., Makino, S. & Shirahata, T. Membrane sorting during swimming internalization of Brucella is required for phagosome trafficking decisions. Microb. Pathog. 33, 225–237 (2002).

    PubMed  Google Scholar 

  30. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435–447 (1999).

    CAS  PubMed  Google Scholar 

  31. Shin, J., Gao, Z. & Abraham, S. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289, 785–788 (2000).

    CAS  PubMed  Google Scholar 

  32. Norkin, L., Wolfrom, S. & Stuart, E. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Exp. Cell Res. 266, 229–238 (2001).

    CAS  PubMed  Google Scholar 

  33. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000).

    CAS  PubMed  Google Scholar 

  34. Nichols, B. & Lippincott-Schwartz, J. Endocytosis without clathrin coats. Trends Cell Biol. 11, 406–412 (2001).

    CAS  PubMed  Google Scholar 

  35. Mañes, S., Lacalle, R., Gómez-Moutón, C. & Martínez-A, C. From rafts to crafts: membrane assymetry in moving cells. Trends Immunol. 2003 24, 319–325 (2003)

    Google Scholar 

  36. Lafont, F., Tran Van Nhieu, G., Hanada, K., Sansonetti, P. & van der Goot, F. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44–IpaB interaction. EMBO J. 21, 4449–4457 (2002). This study described how bacteria promote their macropinocytotic uptake by taking over host raft-associated signalling pathways that link these microdomains with the actin cytoskeleton.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lacalle, R. et al. Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. J. Cell Biol. 157, 277–289 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Coconnier, M., Lorrot, M., Barbat, A., Laboisse, C. & Servin, A. Listeriolysin O-induced stimulation of mucin exocytosis in polarized intestinal mucin-secreting cells: evidence for toxin recognition of membrane-associated lipids and subsequent toxin internalization through caveolae. Cell. Microbiol. 2, 487–504 (2000).

    CAS  PubMed  Google Scholar 

  39. Kayal, S. et al. Listeriolysin O secreted by Listeria monocytogenes induces NF-κB signalling by activating the IκB kinase complex. Mol. Microbiol. 44, 1407–1419 (2002).

    CAS  PubMed  Google Scholar 

  40. Grassmé, H. et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nature Med. 9, 322–330 (2003).

    PubMed  Google Scholar 

  41. Fivaz, M., Abrami, L. & van der Goot, F. Landing on lipid rafts. Trends Cell Biol. 9, 212–213 (1999).

    CAS  PubMed  Google Scholar 

  42. Pfeiffer, A. et al. Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31, 3153–3164 (2001).

    CAS  PubMed  Google Scholar 

  43. Norkin, L. Simian virus 40 infection via MHC class I molecules and caveolae. Immunol. Rev. 168, 13–22 (1999).

    CAS  PubMed  Google Scholar 

  44. Parton, R. & Lindsay, M. Exploitation of major histocomplatibility complex class I molecules and caveolae by simian virus 40. Immunol. Rev. 168, 23–31 (1999).

    CAS  PubMed  Google Scholar 

  45. Parton, R., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    CAS  PubMed  Google Scholar 

  46. Märjomaki, V. et al. Internalization of echovirus 1 in caveolae. J. Virol. 76, 1856–1865 (2002).

    PubMed  PubMed Central  Google Scholar 

  47. Ahn, A., Gibbons, D. & Kielian, M. The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J. Virol. 76, 3267–3275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, X. & London, E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849 (2000).

    CAS  PubMed  Google Scholar 

  49. Waarts, B., Bittman, R. & Wilschut, J. Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J. Biol. Chem. 277, 38141–38147 (2002).

    CAS  PubMed  Google Scholar 

  50. Doms, R. & Trono, D. The plasma membrane as a combat zone in the HIV battlefield. Genes Dev. 14, 2677–2688 (2000).

    CAS  PubMed  Google Scholar 

  51. Mellado, M., Rodríguez-Frade, J., Mañes, S. & Martínez-A, C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 19, 397–421 (2001).

    CAS  PubMed  Google Scholar 

  52. Hammache, D., Yahi, N., Maresca, M., Pieroni, G. & Fantini, J. Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J. Virol. 73, 5244–5248 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liao, Z., Cimakasky, L., Hampton, R., Nguyen, D. & Hildreth, J. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 17, 1009–1019 (2001).

    CAS  PubMed  Google Scholar 

  54. Popik, W., Alce, T. & Au, W. Human immunodeficiency virus type 1 uses lipid raft-co-localized CD4 and chemokine receptors for productive entry into CD4+ T cells. J. Virol. 76, 4709–4722 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Khanna, K. et al. Vaginal transmission of cell-associated HIV-1 in the mouse is blocked by a topical, membrane-modifying agent. J. Clin. Invest. 109, 205–211 (2002). This article analyses the use of rafts as therapeutic targets to prevent infection with HIV-1 in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nisole, S., Krust, B. & Hovanessian, A. Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp. Cell Res. 276, 155–173 (2002).

    CAS  PubMed  Google Scholar 

  57. del Real, G. et al. Blocking of HIV-1 infection by targeting CD4 to non-raft membrane domains. J. Exp. Med. 196, 293–301 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gallo, S., Puri, A. & Blumenthal, R. HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. Biochemistry 40, 12231–12236 (2001).

    CAS  PubMed  Google Scholar 

  59. Viard, M. et al. Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. J. Virol. 76, 11584–11595 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen, D. & Taub, D. Cholesterol is essential for macrophage inflammatory protein 1β binding and conformational integrity of CC chemokine receptor 5. Blood 99, 4298–4306 (2002).

    CAS  PubMed  Google Scholar 

  61. Nguyen, D. & Taub, D. CXCR4 function requires membrane cholesterol: implications for HIV infection. J. Immunol. 168, 4121–4126 (2002).

    CAS  PubMed  Google Scholar 

  62. Mañes, S. et al. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220 (1999).

    PubMed  PubMed Central  Google Scholar 

  63. Mañes, S. et al. Membrane raft microdomains in chemokine receptor function. Semin. Immunol. 13, 147–157 (2001).

    PubMed  Google Scholar 

  64. Sorice, M. et al. Evidence for cell surface association between CXCR4 and ganglioside GM3 after gp120 binding in SupT1 lymphoblastoid cells. FEBS Letters 506, 55–60 (2001).

    CAS  PubMed  Google Scholar 

  65. Hug, P. et al. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 74, 6377–6385 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kozak, S., Heard, J. & Kabat, D. Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus. J. Virol. 76, 1802–1815 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Percherancier, Y. et al. HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains. J. Biol. Chem. 278, 3153–3161 (2003).

    CAS  PubMed  Google Scholar 

  68. Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044 (1999).

    CAS  PubMed  Google Scholar 

  69. Manie, S., Debreyne, S., Vincent, S. & Gerlier, D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J. Virol. 74, 305–311 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marquardt, M., Phalen, T. & Kielian, M. Cholesterol is required in the exit pathway of Semliki forest virus. J. Cell Biol. 123, 57–65 (1993).

    CAS  PubMed  Google Scholar 

  71. Bavari, S. et al. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg Viruses. J. Exp. Med. 195, 593–602 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, G., Church, G. & Wilson, D. A subpopulation of tegument protein Vhs localizes to detergent-insoluble lipid rafts in herpes simplex virus-infected cells. J. Virol. 77, 2038–2045 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Campbell, S., Crowe, S. & Mak, J. Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS 16, 2253–2261 (2002).

    CAS  PubMed  Google Scholar 

  74. Guyader, M., Kiyokawa, E., Abrami, L., Turelli, P. & Trono, D. Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J. Virol. 76, 10356–10364 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Vanderplasschen, A., Mathew, E., Hollinshead, M., Sim, R. & Smith, G. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc. Natl Acad. Sci. USA . 95, 7544–7549 (1998). The authors provide a clear example of how viruses bud from rafts to manipulate immune responses.

    PubMed  PubMed Central  Google Scholar 

  76. Knox, P. & Young, L. Epstein–Barr virus infection of CR2-transfected epithelial cells reveals the presence of MHC class II on the virion. Virology 213, 147–157 (1995).

    CAS  PubMed  Google Scholar 

  77. Cantin, R., Fortin, J., Lamontagne, G. & Tremblay, M. The presence of host-derived HLA-DR1 on human immunodeficiency virus type 1 increases viral infectivity. J. Virol. 71, 1922–1930 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hildreth, J. Syncytium-inhibiting monoclonal antibodies produced against human T-cell lymphotropic virus type 1-infected cells recognize class II major histocompatibility complex molecules and block by protein crowding. J. Virol. 72, 9544–9552 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rossio, J., Bess, J., Henderson, L., Cresswell, P. & Arthur, L. HLA class II on HIV particles is functional in superantigen presentation to human T cells: implications for HIV pathogenesis. AIDS Res. Hum. Retroviruses 11, 1433–1439 (1995).

    CAS  PubMed  Google Scholar 

  80. Aikawa, M., Miller, L., Johnson, J. & Rabbege, J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 77, 72–82 (1978).

    CAS  PubMed  Google Scholar 

  81. Suss-Toby, E., Zimmerberg, J. & Ward, G. Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc. Natl Acad. Sci. USA 93, 8413–8418 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Joiner, K., Fuhrman, S., Miettinen, H., Kasper, L. & Mellman, I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249, 641–646 (1990).

    CAS  PubMed  Google Scholar 

  83. Lauer, S. et al. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556–3564 (2000). This paper and reference 114 show that raft-associated proteins can access the protozoa vacuole. In the absence of endocytosis, raft lipids such as sphingomyelin and cholesterol regulate the intracellular survival of the malaria protozoan.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Samuel, B. et al. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276, 29319–29329 (2001).

    CAS  PubMed  Google Scholar 

  85. Dobbelaere, D., Fernandez, P. & Heussler, V. Theileria parva: taking control of host cell proliferation and survival mechanisms. Cell. Microbiol. 2, 91–99 (2000).

    CAS  PubMed  Google Scholar 

  86. Baumgartner, M. et al. Constitutive exclusion of Csk from Hck-positive membrane microdomains permits Src kinase-dependent proliferation of Theileria-transformed B lymphocytes. Blood 101, 1874–1881 (2003). The authors describe how protozoa hijack raft-associated signalling to manipulate proliferation and transformation of B cells.

    CAS  PubMed  Google Scholar 

  87. Nolan, D. et al. Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. J. Biol. Chem. 275, 4072–4080 (2000).

    CAS  PubMed  Google Scholar 

  88. Denny, P., Field, M. & Smith, D. GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett. 491, 148–153 (2001).

    CAS  PubMed  Google Scholar 

  89. Ostermeyer, A., Beckrich, B., Ivarson, K., Grove, K. & Brown, D. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-β-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J. Biol. Chem. 274, 34459–34466 (1999).

    CAS  PubMed  Google Scholar 

  90. De Angelis, D., Miesenbock, G., Zemelman, B. & Rothman, J. PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Natl Acad. Sci. USA 95, 12312–12316 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    CAS  PubMed  Google Scholar 

  92. Kenworthy, A., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored protein in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gómez-Moutón, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA 98, 9642–9647 (2001). The authors show the segregation of distinct raft domains in T cells, associating specific proteins and lipids.

    PubMed  PubMed Central  Google Scholar 

  94. Madore, N. et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18, 6917–6926 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Parton, R. Caveolae — from ultrastructure to molecular mechanisms. Nature Rev. Mol. Cell Biol. 4, 162–167 (2003).

    CAS  Google Scholar 

  96. Wooldridge, K., Williams, P. & Ketley, J. Host signal transduction and endocytosis of Campylobacter jejuni. Microb. Pathog. 21, 299–305 (1996).

    CAS  PubMed  Google Scholar 

  97. Baorto, D. et al. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389, 636–639 (1997).

    CAS  PubMed  Google Scholar 

  98. Garner, M., Hayward, R. & Koronakis, V. The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking. Cell. Microbiol. 4, 153–165 (2002).

    CAS  PubMed  Google Scholar 

  99. Catron, D. et al. The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell. Microbiol. 4, 315–328 (2002).

    CAS  PubMed  Google Scholar 

  100. Zitzer, A. et al. Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins streptolysin O and Vibrio cholerae cytolysin. J. Biol. Chem. 276, 14628–14633 (2001).

    CAS  PubMed  Google Scholar 

  101. Abrami, L. & van Der Goot, F. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J. Cell Biol. 147, 175–184 (1999). An elegant study showing that oligomerization efficiency of a toxin (and therefore toxicity) is markedly increased by its binding to and concentration in raft clusters.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nishiki, T. et al. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett. 378, 253–257 (1996).

    CAS  PubMed  Google Scholar 

  103. Herreros, J., Ng, T. & Schiavo, G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell 12, 2947–2960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nusrat, A. et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69, 1329–1336 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gordon, V. et al. Clostridium septicum α-toxin uses glycosylphosphatidylinositol-anchored protein receptors. J. Biol. Chem. 274, 27274–27280 (1999).

    CAS  PubMed  Google Scholar 

  106. Miyata, S. et al. Clostridium perfringens ε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin–Darby canine kidney cells and rat synaptosomes. J. Biol. Chem. 277, 39463–39468 (2002).

    CAS  PubMed  Google Scholar 

  107. Waheed, A. et al. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl Acad. Sci. USA 98, 4926–4931 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Abrami, L., Liu, S., Cosson, P., Leppla, S. & van der Goot, F. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhuang, M. et al. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J. Biol. Chem. 277, 13863–13872 (2002).

    CAS  PubMed  Google Scholar 

  110. Patel, H. et al. Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 70, 4112–4123 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Narayan, S., Barnard, R. & Young, J. Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J. Virol. 77, 1977–1983 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, X., Xiong, Y. & Silver, J. Asymmetric requirement for cholesterol in receptor-bearing but not envelope-bearing membranes for fusion mediated by ecotropic murine leukemia virus. J. Virol. 76, 6701–6709 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Niyogi, K. & Hildreth, J. Characterization of new syncytium-inhibiting monoclonal antibodies implicates lipid rafts in human T-cell leukemia virus type 1 syncytium formation. J. Virol. 75, 7351–7361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mordue, D., Desai, N., Dustin, M. & Sibley, L. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J. Exp. Med. 190, 1783–1792 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Jiménez-Baranda, E. Mira, R. A. Lacalle, C. Gómez and P. Lucas for their contribution to part of the data that are presented here and for helpful discussion, and C. Mark for editorial assistance. The authors apologize to those researchers whose work has not been cited owing to space limitations. Our work is supported by grants from the Spanish MCyT/FEDER (Ministerio de Ciencia y Tecnologia/Fondos Europeos de Desarrollo Regional). The Department of Immunology and Oncology was founded and is supported by the Spanish Council for Scientific Research (CSIC) and by Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Martínez-A.

Related links

Related links

DATABASES

LocusLink

ASM

CCR5

CD4

CD8

CD14

CD44

CD48

CD55

CD59

CD95

CSK

CXCR4

IL-1

IL-1β

IL-6

NF-κB

PrP

TACO

TLR1

TLR2

TLR4

TLR6

TNF

Entrez

EBV

HIV-1

SFV

SV40

Glossary

IMMUNE SYNAPSE

A structure that is formed at the cell surface between a T or B cell and an antigen-presenting cell; also known as the supramolecular activation cluster (SMAC). Important molecules that are involved in T- or B-cell activation — including the T- or B-cell receptor, numerous signal-transduction molecules and molecular adaptors — accumulate at this site. The formation of the immune synapse requires mobilization of the actin cytoskeleton.

NYSTATIN

An antibiotic obtained from Streptomyces noursei that binds to cholesterol in the cell membrane. It is presently used in anti-fungal drug therapy for infection with Candida albicans.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). A technique that is used to analyse intermolecular interactions on the basis of the energy transfer from a donor molecule to an acceptor molecule without the emission of a photon. Using microscopic or flow-cytometry-based methods, proteins that are fused to fluorescent proteins are assessed for their interaction by measuring the energy transfer between fluorophores.

FIMH

An Esherichia coli adhesin that is encoded by the bacterial FimH gene. Adhesins are expressed by the bacterial pilus — an organelle that extends from the bacterial surface and functions to attach the bacterium to the target cell.

TYPE III SECRETION

Specialized secretion systems that allow Gram-negative bacteria to target virulence factors directly to host cells. They are comprised of at least 20 genes that encode secreted effectors and the machinery required for the secretion and translocation to target cells. Chaperones are needed for secretion, and although the virulence factors differ between pathogens, the secretion machinery is often interchangeable.

ACID SPHINGOMYELINASE

(ASM). A glycoprotein that functions as a lysosomal enzyme, the deficiency of which causes Niemann–Pick disease type A. A secreted and a membrane-anchored form of this enzyme have been described.

DETERGENT-RESISTANT MEMBRANE

(DRM). A membrane that remains insoluble after cell lysis with cold non-ionic detergents — generally Triton X-100 is used, although Brij58 and CHAPS can also be used. DRMs are post-lysis membrane aggregates that partition in the low-density fraction in sucrose-density gradients. The DRM fraction is considered to be enriched in cholesterol-rich raft domains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mañes, S., del Real, G. & Martínez-A, C. Pathogens: raft hijackers. Nat Rev Immunol 3, 557–568 (2003). https://doi.org/10.1038/nri1129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing