Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytoskeletal control of B cell responses to antigens

Key Points

  • The cortical actin cytoskeleton regulates cellular mechanics and signalling by plasma membrane receptors.

  • In B cells, the cortical cytoskeleton is controlled through multiple connections to the signalling pathways that are downstream of the B cell antigen receptor.

  • Cortical actin regulates B cell signalling by controlling the diffusion and reaction rates of plasma membrane proteins.

  • The remodelling of cortical actin in response to antigen regulates B cell immune synapses, antigen internalization and cell polarization.

  • Mechanical forces produced by the cytoskeleton promote affinity discrimination during B cell antigen extraction from antigen-presenting cells.

  • Differences in actin dynamics in different B cell subsets contribute to the subset-specific regulation of B cell activation; for example, actin dynamics improve affinity discrimination in germinal centre B cells.

Abstract

The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cortical cytoskeleton in B cells.
Figure 2: B cell receptor signalling to the cytoskeleton.
Figure 3: Effects of the actin cytoskeleton on signalling reactions in the plasma membrane.
Figure 4: The immune synapses of naive and germinal centre B cells.

Similar content being viewed by others

References

  1. Moulding, D. A., Record, J., Malinova, D. & Thrasher, A. J. Actin cytoskeletal defects in immunodeficiency. Immunol. Rev. 256, 282–299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Derry, J., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78, 635–644 (1994).

    CAS  PubMed  Google Scholar 

  3. Thrasher, A. J. & Burns, S. O. WASP: a key immunological multitasker. Nat. Rev. Immunol. 10, 182–192 (2010).

    CAS  PubMed  Google Scholar 

  4. Massaad, M. J., Ramesh, N. & Geha, R. S. Wiskott–Aldrich syndrome: a comprehensive review. Ann. NY Acad. Sci. 1285, 26–43 (2013).

    CAS  PubMed  Google Scholar 

  5. Meyer-Bahlburg, A. et al. Wiskott–Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood 112, 4158–4169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolhatkar, N. S. et al. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott–Aldrich syndrome. J. Exp. Med. 212, 1663–1677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker-Herman, S. et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J. Exp. Med. 208, 2033–2042 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Recher, M. et al. B cell-intrinsic deficiency of the Wiskott–Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood 119, 2819–2828 (2012). References 7 and 8 show that B cell hyperactivity underlies the autoimmune features of Wiskott–Aldrich syndrome in mouse models.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattila, P. K., Batista, F. D. & Treanor, B. Dynamics of the actin cytoskeleton mediates receptor cross talk: an emerging concept in tuning receptor signaling. J. Cell Biol. 212, 267–280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012).

    CAS  PubMed  Google Scholar 

  12. Morone, N. et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell Biol. 174, 851–862 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bovellan, M. et al. Cellular control of cortical actin nucleation. Curr. Biol. 24, 1628–1635 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fritzsche, M. et al. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2, e1501337 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Parameswaran, N. & Gupta, N. Re-defining ERM function in lymphocyte activation and migration. Immunol. Rev. 256, 63–79 (2013).

    CAS  PubMed  Google Scholar 

  16. Maravillas-Montero, J. L., Gillespie, P. G., Patiño-López, G., Shaw, S. & Santos-Argumedo, L. Myosin 1c participates in B cell cytoskeleton rearrangements, is recruited to the immunologic synapse, and contributes to antigen presentation. J. Immunol. 187, 3053–3063 (2011).

    CAS  PubMed  Google Scholar 

  17. López-Ortega, O. et al. Myo1g is an active player in maintaining cell stiffness in B-lymphocytes. Cytoskeleton 73, 258–268 (2016).

    PubMed  Google Scholar 

  18. Fritzsche, M., Lewalle, A., Duke, T., Kruse, K. & Charras, G. Analysis of turnover dynamics of the submembranous actin cortex. Mol. Biol. Cell 24, 757–767 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Staiger, C. J. et al. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol. 184, 269–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai, L., Makhov, A. M., Schafer, D. A. & Bear, J. E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pollard, T. D. Theory from the Oster Laboratory leaps ahead of experiment in understanding actin-based cellular motility. Biophys. J. 111, 1589–1592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Haviv, L. et al. Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc. Natl Acad. Sci. USA 103, 4906–4911 (2006).

    CAS  PubMed  Google Scholar 

  23. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 7, 404–414 (2006).

    CAS  PubMed  Google Scholar 

  24. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Billington, N., Wang, A., Mao, J., Adelstein, R. S. & Sellers, J. R. Characterization of three full-length human nonmuscle myosin II paralogs. J. Biol. Chem. 288, 33398–33410 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486–498 (2015).

    CAS  PubMed  Google Scholar 

  27. Reymann, A.-C. et al. Actin network architecture can determine myosin motor activity. Science 336, 1310–1314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ennomani, H. et al. Architecture and connectivity govern actin network contractility. Curr. Biol. 26, 616–626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Köster, D. V. et al. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl Acad. Sci. USA 113, E1645–E1654 (2016).

    PubMed  Google Scholar 

  30. Chaudhuri, A., Bhattacharya, B., Gowrishankar, K., Mayor, S. & Rao, M. Spatiotemporal regulation of chemical reactions by active cytoskeletal remodeling. Proc. Natl Acad. Sci. USA 108, 14825–14830 (2011).

    CAS  PubMed  Google Scholar 

  31. Billington, N. et al. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments. Curr. Biol. 25, 942–948 (2015).

    CAS  PubMed  Google Scholar 

  32. Treanor, B. et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32, 187–199 (2010). This paper provides the first description of the effects of cortical actin on the diffusion of the BCR.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rotty, J. D., Wu, C. & Bear, J. E. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat. Rev. Mol. Cell Biol. 14, 7–12 (2012).

    PubMed  Google Scholar 

  34. Westerberg, L. et al. Wiskott–Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood 105, 1144–1152 (2005).

    CAS  PubMed  Google Scholar 

  35. Liu, C. et al. N-WASP is essential for the negative regulation of B cell receptor signaling. PLoS Biol. 11, e1001704 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Volpi, S. et al. N-WASP is required for B-cell-mediated autoimmunity in Wiskott–Aldrich syndrome. Blood 127, 216–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Westerberg, L. S. et al. Wiskott–Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function. Blood 119, 3966–3974 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein. Nature 399, 379–383 (1999).

    CAS  PubMed  Google Scholar 

  39. Chaki, S. P. & Rivera, G. M. Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration. Bioarchitecture 3, 57–63 (2014).

    Google Scholar 

  40. Tomasevic, N. et al. Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2 . Biochemistry 46, 3494–3502 (2007).

    CAS  PubMed  Google Scholar 

  41. Rivera, G. M., Vasilescu, D., Papayannopoulos, V., Lim, W. A. & Mayer, B. J. A. Reciprocal interdependence between Nck and PI(4,5)P2 promotes localized N-WASp-mediated actin polymerization in living cells. Mol. Cell 36, 525–535 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, C. et al. A balance of Bruton's tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J. Immunol. 187, 230–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cory, G. O. C., Garg, R., Cramer, R. & Ridley, A. J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. J. Biol. Chem. 277, 45115–45121 (2002).

    CAS  PubMed  Google Scholar 

  44. Blundell, M. P. et al. Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc. Natl Acad. Sci. USA 106, 15738–15743 (2009).

    CAS  PubMed  Google Scholar 

  45. Tybulewicz, V. L. J. & Henderson, R. B. Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol. 9, 630–644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Heo, J., Thapar, R. & Campbell, S. L. Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors. Biochemistry 44, 6573–6585 (2005).

    CAS  PubMed  Google Scholar 

  47. Fu, C., Turck, C., Kurosaki, T. & Chan, A. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    CAS  PubMed  Google Scholar 

  48. Brooks, S. R., Li, X., Volanakis, E. J. & Carter, R. H. Systematic analysis of the role of CD19 cytoplasmic tyrosines in enhancement of activation in Daudi human B cells: clustering of phospholipase C and Vav and of Grb2 and Sos with different CD19 tyrosines. J. Immunol. 164, 3123–3131 (2000).

    CAS  PubMed  Google Scholar 

  49. Mattila, P. K. et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38, 461–474 (2013). This paper describes the nanoscopic organization of the BCR in the plasma membrane.

    CAS  PubMed  Google Scholar 

  50. Malhotra, S., Kovats, S., Zhang, W. & Coggeshall, K. M. Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J. Biol. Chem. 284, 36202–36212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gerasimcik, N. et al. The Rho GTPase Cdc42 is essential for the activation and function of mature B cells. J. Immunol. 194, 4750–4758 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arana, E. et al. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity 28, 88–99 (2008).

    CAS  PubMed  Google Scholar 

  53. Walmsley, M. J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    CAS  PubMed  Google Scholar 

  54. Henderson, R. B. et al. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. J. Exp. Med. 207, 837–853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Castello, A. et al. Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K–Akt pathway in B cells. Nat. Immunol. 14, 966–975 (2013).

    CAS  PubMed  Google Scholar 

  56. Ditlev, J. A. et al. Stoichiometry of Nck-dependent actin polymerization in living cells. J. Cell Biol. 197, 643–658 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Padrick, S. B., Doolittle, L. K., Brautigam, C. A., King, D. S. & Rosen, M. K. Arp2/3 complex is bound and activated by two WASP proteins. Proc. Natl Acad. Sci. USA 108, E472–E479 (2011).

    CAS  PubMed  Google Scholar 

  58. Ramesh, N., Antón, I. M., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl Acad. Sci. USA 94, 14671–14676 (1997).

    CAS  PubMed  Google Scholar 

  59. Antón, I. M. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 16, 193–204 (2002).

    PubMed  Google Scholar 

  60. Keppler, S. J. et al. Wiskott–Aldrich syndrome interacting protein deficiency uncovers the role of the co-receptor CD19 as a generic hub for PI3 kinase signaling in B cells. Immunity 43, 660–673 (2015). This paper describes the importance of the actin cytoskeleton, particularly the protein WIPF1, for PI3K activation downstream of CD19 signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Massaad, M. J. et al. Binding of WIP to actin is essential for T cell actin cytoskeleton integrity and tissue homing. Mol. Cell. Biol. 34, 4343–4354 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Donnelly, S. K., Weisswange, I., Zettl, M. & Way, M. WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr. Biol. 23, 999–1006 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Janssen, E. et al. A DOCK8–WIP–WASp complex links T cell receptors to the actin cytoskeleton. J. Clin. Invest. 126, 3837–3851 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Harada, Y. et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119, 4451–4461 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Randall, K. L. et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat. Immunol. 10, 1283–1291 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Park, H., Chan, M. M. & Iritani, B. M. Hem-1: putting the 'WAVE' into actin polymerization during an immune response. FEBS Lett. 584, 4923–4932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J. & Kirschner, M. W. An actin-based wave generator organizes cell motility. PLoS Biol. 5, e221 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. Leithner, A. et al. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 18, 1253–1259 (2016).

    CAS  PubMed  Google Scholar 

  69. Park, H. et al. A point mutation in the murine Hem1 gene reveals an essential role for hematopoietic protein 1 in lymphopoiesis and innate immunity. J. Exp. Med. 205, 2899–2913 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Taniuchi, I. et al. Antigen-receptor induced clonal expansion and deletion of lymphocytes are impaired in mice lacking HS1 protein, a substrate of the antigen-receptor-coupled tyrosine kinases. EMBO J. 14, 3664–3678 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wolkerstorfer, S. et al. HAX1 deletion impairs BCR internalization and leads to delayed BCR-mediated apoptosis. Cell. Mol. Immunol. 13, 451–461 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Saci, A. & Carpenter, C. L. RhoA GTPase regulates B cell receptor signaling. Mol. Cell 17, 205–214 (2005).

    CAS  PubMed  Google Scholar 

  73. Zhang, S., Zhou, X., Lang, R. A. & Guo, F. RhoA of the Rho family small GTPases is essential for B lymphocyte development. PLoS ONE 7, e33773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kühn, S. & Geyer, M. Formins as effector proteins of Rho GTPases. Small GTPases 5, e29513–e29515 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Eisenmann, K. M. et al. T cell responses in mammalian diaphanous-related formin mDia1 knock-out mice. J. Biol. Chem. 282, 25152–25158 (2007).

    CAS  PubMed  Google Scholar 

  76. Murugesan, S. et al. Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J. Cell Biol. 215, 383–399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gomez, T. S. et al. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vascotto, F. et al. The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J. Cell Biol. 176, 1007–1019 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Satpathy, S. et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol. Syst. Biol. 11, 810–810 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Natkanski, E. et al. B cells use mechanical energy to discriminate antigen affinities. Science 340, 1587–1590 (2013). This study demonstrates that B cells use mechanical forces to extract antigens from immune synapses and that the forces regulate affinity discrimination.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016). This paper describes the unique architecture and mechanics of GC B cell synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, X., Kapoor, T. M., Chen, J. K. & Huse, M. Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc. Natl Acad. Sci. USA 110, 11976–11981 (2013).

    CAS  PubMed  Google Scholar 

  83. Ludowyke, R. I. et al. Phosphorylation of nonmuscle myosin heavy chain IIA on Ser1917 is mediated by protein kinase CβII and coincides with the onset of stimulated degranulation of RBL-2H3 mast cells. J. Immunol. 177, 1492–1499 (2006).

    CAS  PubMed  Google Scholar 

  84. Freeman, S. A. et al. Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J. Immunol. 187, 5887–5900 (2011). This study shows an important role for cofilin 1-mediated actin severing in BCR-induced actin remodelling.

    CAS  PubMed  Google Scholar 

  85. Hao, S. & August, A. Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol. Biol. Cell 16, 2275–2284 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    CAS  PubMed  Google Scholar 

  87. Oser, M. & Condeelis, J. The cofilin activity cycle in lamellipodia and invadopodia. J. Cell. Biochem. 108, 1252–1262 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jaqaman, K. & Grinstein, S. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol. 22, 515–526 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Depoil, D. et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol. 9, 63–72 (2008).

    CAS  PubMed  Google Scholar 

  90. Tolar, P., Hanna, J., Krueger, P. D. & Pierce, S. K. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30, 44–55 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tedder, T. F., Inaoki, M. & Sato, S. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6, 107–118 (1997).

    CAS  PubMed  Google Scholar 

  92. Maity, P. C. et al. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal. 8, ra93 (2015). References 49 and 92 reveal the nanoscopic organization of the BCR and its relationship to the actin cytoskeleton.

    PubMed  Google Scholar 

  93. Lee, J., Sengupta, P., Brzostowski, J., Lippincott-Schwartz, J. & Pierce, S. K. The nanoscale spatial organization of B cell receptors on IgM- and IgG-expressing human B cells. Mol. Biol. Cell 28, 511–523 (2016).

    PubMed  Google Scholar 

  94. Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S. & Davis, M. M. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl Acad. Sci. USA 103, 18992–18997 (2006).

    CAS  PubMed  Google Scholar 

  95. Kläsener, K., Maity, P. C., Hobeika, E., Yang, J. & Reth, M. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. eLife 3, e02069 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    CAS  PubMed  Google Scholar 

  97. Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367 (2012).

    CAS  PubMed  Google Scholar 

  98. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Polarity sorting of actin filaments in cytochalasin-treated fibroblasts. J. Cell Sci. 110, 1693–1704 (1997).

    CAS  PubMed  Google Scholar 

  99. Yang, J. & Reth, M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett. 584, 4872–4877 (2010).

    CAS  PubMed  Google Scholar 

  100. Kalay, Z., Fujiwara, T. K. & Kusumi, A. Confining domains lead to reaction bursts: reaction kinetics in the plasma membrane. PLoS ONE 7, e32948 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kumari, S. et al. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 4, e04953 (2015).

    PubMed Central  Google Scholar 

  103. Gupta, N. et al. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat. Immunol. 7, 625–633 (2006).

    CAS  PubMed  Google Scholar 

  104. Pore, D. et al. Ezrin tunes the magnitude of humoral immunity. J. Immunol. 191, 4048–4058 (2013).

    CAS  PubMed  Google Scholar 

  105. Treanor, B., Depoil, D., Bruckbauer, A. & Batista, F. D. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J. Exp. Med. 208, 1055–1068 (2011). This paper demonstrates the importance of ezrin-mediated coupling of the plasma membrane to the cytoskeleton in the regulation of BCR signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Douglass, A. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sato, S., Jansen, P. J. & Tedder, T. F. CD19 and CD22 expression reciprocally regulates tyrosine phosphorylation of Vav protein during B lymphocyte signaling. Proc. Natl Acad. Sci. USA 94, 13158–13162 (1997).

    CAS  PubMed  Google Scholar 

  108. Gasparrini, F. et al. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J. 35, 258–280 (2016). This paper shows the importance of the regulation of CD22 diffusion in the inhibition of BCR signalling.

    CAS  PubMed  Google Scholar 

  109. Collins, B. E., Smith, B. A., Bengtson, P. & Paulson, J. C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol. 7, 199–206 (2006).

    CAS  PubMed  Google Scholar 

  110. Müller, J. et al. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl Acad. Sci. USA 110, 12402–12407 (2013).

    PubMed  Google Scholar 

  111. Xu, L. et al. Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism FcγRIIB–T232. J. Exp. Med. 213, 2707–2727 (2016). This paper demonstrates that rapid FcRγIIB diffusion is important for terminating BCR signalling that is induced by IgG-containing immune complexes.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11, 1056–1058 (2005).

    CAS  PubMed  Google Scholar 

  113. Carrasco, Y. & Batista, F. D. B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Curr. Opin. Immunol. 18, 286–291 (2006).

    CAS  PubMed  Google Scholar 

  114. Fleire, S. J. et al. B cell ligand discrimination through a spreading and contraction response. Science 312, 738–741 (2006). This is a landmark paper that describes the cellular and cytoskeletal changes that occur during B cell immune synapse formation.

    CAS  PubMed  Google Scholar 

  115. Weber, M. et al. Phospholipase C-γ2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J. Exp. Med. 205, 853–868 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ketchum, C., Miller, H., Song, W. & Upadhyaya, A. Ligand mobility regulates B cell receptor clustering and signaling activation. Biophys. J. 106, 26–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Carrasco, Y. R., Fleire, S. J., Cameron, T., Dustin, M. L. & Batista, F. D. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 20, 589–599 (2004).

    CAS  PubMed  Google Scholar 

  118. Carrasco, Y. R. & Batista, F. D. B-Cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J. 25, 889–899 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yi, J., Wu, X. S., Crites, T. & Hammer, J. A. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol. Biol. Cell 23, 834–852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Schnyder, T. et al. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity 34, 905–918 (2011).

    CAS  PubMed  Google Scholar 

  121. Yuseff, M.-I. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).

    CAS  PubMed  Google Scholar 

  122. Batista, F. D. & Neuberger, M. S. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J. 19, 513–520 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Spillane, K. M. & Tolar, P. B cell antigen extraction is regulated by physical properties of antigen-presenting cells. J. Cell Biol. 216, 217–230 (2017). This paper shows that APC stiffness promotes B cell affinity discrimination.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hoogeboom, R. & Tolar, P. Molecular mechanisms of B cell antigen gathering and endocytosis. Curr. Top. Microbiol. Immunol. 393, 45–63 (2016).

    CAS  PubMed  Google Scholar 

  125. Stoddart, A. et al. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17, 451–462 (2002).

    CAS  PubMed  Google Scholar 

  126. Sharma, S., Orlowski, G. & Song, W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J. Immunol. 182, 329–339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Seeley-Fallen, M. K. et al. Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proc. Natl Acad. Sci. USA 111, 9881–9886 (2014).

    CAS  PubMed  Google Scholar 

  128. Thaunat, O. et al. Asymmetric segregation of polarized antigen on B cell division shapes presentation capacity. Science 335, 475–479 (2012). This paper shows that the polarized localization of the antigen-processing compartment leads to its asymmetric division during B cell proliferation.

    CAS  PubMed  Google Scholar 

  129. Burbage, M. et al. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J. Exp. Med. 212, 53–72 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Barnett, B. E. et al. Asymmetric B cell division in the germinal center reaction. Science 335, 342–344 (2012).

    CAS  PubMed  Google Scholar 

  131. Lin, W.-H. W. et al. Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell. Rep. 13, 2203–2218 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Basu, R. & Huse, M. Mechanical communication at the immunological synapse. Trends Cell Biol. 27, 241–254 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Wan, Z. et al. B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. J. Immunol. 190, 4661–4675 (2013).

    CAS  PubMed  Google Scholar 

  134. Wan, Z. et al. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. eLife 4, 367 (2015). References 133 and 134 demonstrate the mechanosensitivity of BCR signalling.

    Google Scholar 

  135. Ma, Z., Sharp, K. A., Janmey, P. A. & Finkel, T. H. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol. 6, e43 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. Kim, S. T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide–MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hu, K. H. & Butte, M. J. T cell activation requires force generation. J. Cell Biol. 213, 535–542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, Y. et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    CAS  PubMed  Google Scholar 

  140. Seo, S. et al. Crk-associated substrate lymphocyte type is required for lymphocyte trafficking and marginal zone B cell maintenance. J. Immunol. 175, 3492–3501 (2005).

    CAS  PubMed  Google Scholar 

  141. Browne, C. D. et al. SHEP1 partners with CasL to promote marginal zone B-cell maturation. Proc. Natl Acad. Sci. USA 107, 18944–18949 (2010).

    CAS  PubMed  Google Scholar 

  142. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Birge, R. B., Kalodimos, C., Inagaki, F. & Tanaka, S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun. Signal. 7, 13 (2009).

    PubMed  PubMed Central  Google Scholar 

  144. Tolar, P. & Spillane, K. M. Force generation in B-cell synapses: mechanisms coupling B-cell receptor binding to antigen internalization and affinity discrimination. Adv. Immunol. 123, 69–100 (2014).

    CAS  PubMed  Google Scholar 

  145. Schwickert, T. A. et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208, 1243–1252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392–396 (2001).

    CAS  PubMed  Google Scholar 

  148. Evans, E. & Calderwood, D. A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    CAS  PubMed  Google Scholar 

  149. Bufi, N. et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108, 2181–2190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Derényi, I., Jülicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101 (2002).

    PubMed  Google Scholar 

  151. Muñoz-Fernández, R. et al. Contractile activity of human follicular dendritic cells. Immunol. Cell Biol. 92, 851–859 (2014).

    PubMed  Google Scholar 

  152. Heesters, B. A. et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38, 1164–1175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Bergtold, A., Desai, D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23, 503 (2005).

    CAS  PubMed  Google Scholar 

  154. Zeng, Y. et al. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo. Eur. J. Immunol. 45, 1621–1634 (2015).

    CAS  PubMed  Google Scholar 

  155. Freeman, S. A. et al. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor. Nat. Commun. 6, 6168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kolhatkar, N. S. et al. B-Cell intrinsic TLR7 signals promote depletion of the marginal zone in a murine model of Wiskott–Aldrich syndrome. Eur. J. Immunol. 45, 2773–2779 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    CAS  PubMed  Google Scholar 

  158. Allen, C. D. C., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    CAS  PubMed  Google Scholar 

  159. Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    CAS  PubMed  Google Scholar 

  160. Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    CAS  PubMed  Google Scholar 

  161. Fang, Y., Xu, C., Fu, Y. X., Holers, V. M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  162. Zhang, Y. et al. Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 210, 457–464 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, D. et al. Advanced imaging. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Ritter, A. T. et al. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42, 864–876 (2016).

    Google Scholar 

  165. Huang, F. et al. Ultra-high resolution 3D imaging of whole cells. Cell 166, 1028–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kruse, K. et al. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E. Soft Matter 16, 5–16 (2005).

    CAS  PubMed  Google Scholar 

  169. Prost, J., Julicher, F. & Joanny, J. F. Active gel physics. Nat. Phys. 11, 111–117 (2015).

    CAS  Google Scholar 

  170. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432.e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Balagopalan, L., Sherman, E., Barr, V. A. & Samelson, L. E. Imaging techniques for assaying lymphocyte activation in action. Nat. Rev. Immunol. 11, 21–33 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Baumgart, F. et al. Varying label density allows artifact-free analysis of membrane–protein nanoclusters. Nat. Methods 13, 661–664 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Noy, A. Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr. Opin. Chem. Biol. 15, 710–718 (2011).

    CAS  PubMed  Google Scholar 

  176. Sarkar, R. & Rybenkov, V. V. A guide to magnetic tweezers and their applications. Front. Phys. 4, 491–420 (2016).

    Google Scholar 

  177. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    CAS  PubMed  Google Scholar 

  178. Chen, W., Zarnitsyna, V. I., Sarangapani, K. K., Huang, J. & Zhu, C. Measuring receptor–ligand binding kinetics on cell surfaces: from adhesion frequency to thermal fluctuation methods. Cell. Mol. Bioeng. 1, 276–288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Jurchenko, C. & Salaita, K. S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol. 35, 2570–2582 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Brazão, T. F. et al. Long noncoding RNAs in B-cell development and activation. Blood 128, e10–e19 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the H2020 European Research Council (Consolidator Grant 648228) and the Francis Crick Institute (London, UK), which receives its core funding from Cancer Research UK, the UK Medical Research Council and the Wellcome Trust. The author thanks members of his laboratory for critical reading of the manuscript and J. Tolar for help with designing the Figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tolar.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

ImmGen

PowerPoint slides

Glossary

Wiskott–Aldrich syndrome

An X-linked primary immunodeficiency, which is characterized by recurrent infections, bleeding disorders, eczema and autoimmune reactions.

Coronins

Proteins that disassemble branched actin filaments. Coronin 1A is the target of mutations that cause primary immunodeficiencies.

Filopodia

Long thin cellular extensions that contain linear actin filaments and are used in cellular sensing and migration.

Lamellipodia

Large flat cellular protrusions containing branched actin filaments that drive cell motility.

CD81

A palmitoylated, cholesterol-binding tetraspanin membrane protein that is essential for CD19 expression and function.

Active gel theory

An area of soft-matter physics that describes the mesoscopic behaviour of gels (such as those composed of actin filaments) that are maintained in a non-equilibrium state by the constant consumption of energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolar, P. Cytoskeletal control of B cell responses to antigens. Nat Rev Immunol 17, 621–634 (2017). https://doi.org/10.1038/nri.2017.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.67

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing