Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophils as protagonists and targets in chronic inflammation

Key Points

  • Neutrophils are primarily produced in the bone marrow through a process that is highly dependent on granulocyte colony-stimulating factor (G-CSF). However, changes that are associated with chronic inflammation, such as psychosocial stress, hyperlipidaemia and hyperglycaemia, can stimulate extramedullary neutrophil production and increase neutrophil numbers in the blood.

  • The function of circulating neutrophils is modified by the presence of risk factors for chronic inflammation. Ageing of the host impairs neutrophil migration, whereas metabolic changes can prime neutrophils for activation.

  • The interaction of neutrophils and platelets along the luminal aspect of sites of inflammation is essential for fine-tuning neutrophil recruitment. Neutrophil secretory products, partly in conjunction with platelet-derived proteins, deliver molecular cues to stimulate secondary monocyte recruitment.

  • Neutrophils and macrophages form an intricate partnership at sites of damage. During the inflammation phase, neutrophils enhance macrophage activities that are aimed at eliminating the initiating stimulus. During the resolution phase, dying neutrophils convey an important signal that reprogrammes macrophages to promote healing.

  • Neutrophils have recently been shown to be important in chronic inflammatory diseases, including neurodegenerative diseases and atherosclerosis. Relevant mechanisms include their interplay with the monocyte lineage — for example, the enhancement of monocyte recruitment and the activation of macrophages — and their direct pro-inflammatory effects, such as release of reactive oxygen species and neutrophil extracellular traps (NETs), and neutrophil-derived proteolytic activity.

  • Neutrophil-instructed chronic inflammation can be targeted by inhibiting NET release or by breaking down NETs, by translating recent findings about neutrophil recruitment during chronic inflammation and by promoting the clearance of apoptotic neutrophils. In addition, neutrophil-derived microparticles that elicit anti-inflammatory responses represent an innovative strategy to reduce inflammation.

Abstract

Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic changes alter neutrophil production, phenotype and function.
Figure 2: Neutrophils work with platelets and monocytic cells.
Figure 3: The contribution of neutrophils to atherosclerosis.
Figure 4: Therapeutic strategies to prevent neutrophil-orchestrated chronic inflammation.

Similar content being viewed by others

References

  1. Mayadas, T. N., Cullere, X. & Lowell, C. A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9, 181–218 (2014).

    CAS  PubMed  Google Scholar 

  2. de Oliveira, S., Rosowskim, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16, 378–391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    CAS  PubMed  Google Scholar 

  4. Dancey, J. T., Deubelbeiss, K. A., Harker, L. A. & Finch, C. A. Neutrophil kinetics in man. J. Clin. Invest. 58, 705–715 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Semerad, C. L., Liu, F., Gregory, A. D., Stumpf, K. & Link, D. C. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17, 413–423 (2002).

    CAS  PubMed  Google Scholar 

  6. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Köhler, A. et al. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 117, 4349–4357 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Bajrami, B. et al. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling. J. Exp. Med. 213, 1999–2018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    CAS  PubMed  Google Scholar 

  10. von Vietinghoff, S. & Ley, K. Homeostatic regulation of blood neutrophil counts. J. Immunol. 181, 5183–5188 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).

    CAS  PubMed  Google Scholar 

  12. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Devi, S. et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med. 210, 2321–2336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Granick, J. L. et al. Staphylococcus aureus recognition by hematopoietic stem and progenitor cells via TLR2/MyD88/PGE2 stimulates granulopoiesis in wounds. Blood 122, 1770–1778 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Manz, M. G. & Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 14, 302–314 (2014).

    CAS  PubMed  Google Scholar 

  17. Boettcher, S. et al. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124, 1393–1403 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).

    CAS  PubMed  Google Scholar 

  20. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014). In this study, the authors link psychosocial stress to enhanced myeloid cell production and the development of chronic arterial inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tseng, C. W. & Liu, G. Y. Expanding roles of neutrophils in aging hosts. Curr. Opin. Immunol. 29, 43–48 (2014).

    CAS  PubMed  Google Scholar 

  23. Sapey, E. et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood 123, 239–248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian, F. et al. Reduced bioenergetics and Toll-like receptor 1 function in human polymorphonuclear leukocytes in aging. Aging (Albany NY) 6, 131–139 (2014).

    Google Scholar 

  25. Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Araujo, F. B., Barbosa, D. S., Hsin, C. Y., Maranhão, R. C. & Abdalla, D. S. Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis 117, 61–71 (1995).

    CAS  PubMed  Google Scholar 

  27. Mazor, R. et al. Primed polymorphonuclear leukocytes constitute a possible link between inflammation and oxidative stress in hyperlipidemic patients. Atherosclerosis 197, 937–943 (2008).

    CAS  PubMed  Google Scholar 

  28. Rossaint, J. & Zarbock, A. Platelets in leucocyte recruitment and function. Cardiovasc. Res. 107, 386–395 (2015).

    CAS  PubMed  Google Scholar 

  29. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdulnour, R. E. et al. Maresin 1 biosynthesis during platelet–neutrophil interactions is organ-protective. Proc. Natl Acad. Sci. USA 111, 16526–16531 (2014).

    CAS  PubMed  Google Scholar 

  31. Rossaint, J. et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123, 2573–2584 (2014).

    CAS  PubMed  Google Scholar 

  32. Megens, R. T. et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb. Haemost. 107, 597–598 (2012).

    CAS  PubMed  Google Scholar 

  33. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J. 36, 1394–1404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Grommes, J. et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am. J. Respir. Crit. Care Med. 185, 628–636 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartwig, H. et al. Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thromb. Haemost. 111, 562–564 (2014).

    CAS  PubMed  Google Scholar 

  36. Mokart, D. et al. Monocyte deactivation in neutropenic acute respiratory distress syndrome patients treated with granulocyte colony-stimulating factor. Crit. Care. 12, R17 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. Gallin, J. I. et al. Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood 59, 1317–1329 (1982).

    CAS  PubMed  Google Scholar 

  38. Shiohara, M. et al. Phenotypic and functional alterations of peripheral blood monocytes in neutrophil-specific granule deficiency. J. Leukoc. Biol. 75, 190–197 (2004).

    CAS  PubMed  Google Scholar 

  39. Soehnlein, O., Lindbom, L. & Weber, C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114, 4613–4623 (2009).

    CAS  PubMed  Google Scholar 

  40. Ortega-Gomez, A. et al. Cathepsin G controls arterial but not venular myeloid cell recruitment. Circulation 134, 1176–1188 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Alard, J. E. et al. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Sci. Transl Med. 7, 317ra196 (2015). References 40 and 41 provide novel mechanisms by which platelets and neutrophils work together to recruit inflammatory monocytes, and they establish therapeutic strategies for the inhibition of monocyte recruitment.

    PubMed  Google Scholar 

  42. Wantha, S. et al. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ. Res. 112, 792–801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lim, K. et al. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa4352 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Soehnlein, O. et al. Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J. Clin. Invest. 118, 3491–3502 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Venereau, E. et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209, 1519–1528 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    CAS  PubMed  Google Scholar 

  47. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maianski, N. A., Mul, F. P., van Buul, J. D., Roos, D. & Kuijpers, T. W. Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood 99, 672–679 (2002).

    CAS  PubMed  Google Scholar 

  49. van den Berg, J. M., Weyer, S., Weening, J. J., Roos, D. & Kuijpers, T. W. Divergent effects of tumor necrosis factor α on apoptosis of human neutrophils. J. Leukoc. Biol. 69, 467–473 (2001).

    CAS  PubMed  Google Scholar 

  50. Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat. Immunol. 7, 1209–1216 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    CAS  PubMed  Google Scholar 

  52. Drechsler, M. et al. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ. Res. 116, 827–835 (2015).

    CAS  PubMed  Google Scholar 

  53. Scannell, M. et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J. Immunol. 178, 4595–4605 (2007).

    CAS  PubMed  Google Scholar 

  54. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mukundan, L. et al. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15, 1266–1272 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    CAS  PubMed  Google Scholar 

  58. Morimoto, K., Janssen, W. J. & Terada, M. Defective efferocytosis by alveolar macrophages in IPF patients. Respir. Med. 106, 1800–1803 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Thorp, E. et al. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 286, 33335–33344 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sather, S. et al. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109, 1026–1033 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Driscoll, W. S., Vaisar, T., Tang, J., Wilson, C. L. & Raines, E. W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res. 113, 52–61 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Friggeri, A. et al. HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin. Am. J. Physiol. Cell Physiol. 299, C1267–C1276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hampton, H. R., Bailey, J., Tomura, M., Brink, R. & Chtanova, T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 6, 7139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, C. W. & Unanue, E. R. Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. J. Exp. Med. 210, 375–387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gorlino, C. V. et al. Neutrophils exhibit differential requirements for homing molecules in their lymphatic and blood trafficking into draining lymph nodes. J. Immunol. 193, 1966–1974 (2014).

    CAS  PubMed  Google Scholar 

  66. Hampton, H. R. & Chtanova, T. The lymph node neutrophil. Semin. Immunol. 28, 129–136 (2016).

    CAS  PubMed  Google Scholar 

  67. Scapini, P. & Cassatella, M. A. Social networking of human neutrophils within the immune system. Blood 124, 710–719 (2014).

    CAS  PubMed  Google Scholar 

  68. Hoenderdos, K. & Condliffe, A. The neutrophil in chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 48, 531–539 (2014).

    Google Scholar 

  69. Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601 (2014).

    CAS  PubMed  Google Scholar 

  70. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    CAS  PubMed  Google Scholar 

  71. Elgazar-Carmon, V., Rudich, A., Hadad, N. & Levy, R. Neutrophils transiently infiltrate intraabdominal fat early in the course of high-fat feeding. J. Lipid Res. 49, 1894–1903 (2008).

    CAS  PubMed  Google Scholar 

  72. Chavey, C. et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab. 9, 339–349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Spite, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J. Immunol. 187, 1942–1949 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Braster, Q. et al. Cathelicidin regulates myeloid cell accumulation in adipose tissue and promotes insulin resistance during obesity. Thromb. Haemost. 115, 1237–1239 (2016).

    PubMed  Google Scholar 

  75. Wang, Q. et al. Myeloperoxidase deletion prevents high-fat diet-induced obesity and insulin resistance. Diabetes 63, 4172–4185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mansuy-Aubert, V. et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 17, 534–548 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    CAS  PubMed  Google Scholar 

  79. Baik, S. H. et al. Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol. Aging 35, 1286–1292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zenaro, E. et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015). This study reveals the importance of neutrophils in a mouse model of Alzheimer disease and establishes the importance of neutrophil integrin α L (also known as LFA1), thus suggesting a therapeutic angle.

    CAS  PubMed  Google Scholar 

  81. Gautam, N. et al. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nat. Med. 7, 1123–1127 (2001).

    CAS  PubMed  Google Scholar 

  82. Allen, C. et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol. 189, 381–392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    CAS  PubMed  Google Scholar 

  84. Ionita, M. G. et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler. Thromb. Vasc. Biol. 30, 1842–1848 (2010).

    CAS  PubMed  Google Scholar 

  85. Chèvre, R. et al. High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ. Res. 114, 770–779 (2014).

    PubMed  Google Scholar 

  86. Eriksson, E. E. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation 124, 2129–2138 (2011).

    CAS  PubMed  Google Scholar 

  87. Friedman, G. D., Klatsky, A. L. & Siegelaub, A. B. The leukocyte count as a predictor of myocardial infarction. N. Engl. J. Med. 290, 1275–1278 (1974).

    CAS  PubMed  Google Scholar 

  88. Zernecke, A. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ. Res. 102, 209–217 (2008).

    CAS  PubMed  Google Scholar 

  89. Döring, Y. et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ. Res. 110, 1052–1056 (2012).

    PubMed  Google Scholar 

  90. Döring, Y. et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125, 1673–1683 (2012).

    PubMed  Google Scholar 

  91. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2013).

    CAS  PubMed  Google Scholar 

  93. Soehnlein, O., Ortega- Gómez, A., Döring, Y. & Weber, C. Neutrophil-macrophage interplay in atherosclerosis: protease-mediated cytokine processing versus NET release. Thromb. Haemost. 114, 866–867 (2015).

    PubMed  Google Scholar 

  94. Montecucco, F. et al. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur. Heart J. 33, 846–856 (2012).

    CAS  PubMed  Google Scholar 

  95. Dovi, J. V., He, L. K. & DiPietro, L. A. Accelerated wound closure in neutrophil-depleted mice. J. Leukoc. Biol. 73, 448–455 (2003).

    CAS  PubMed  Google Scholar 

  96. Stirling, D. P., Liu, S., Kubes, P. & Yong, V. W. Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J. Neurosci. 29, 753–764 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kurimoto, T. et al. Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 33, 14816–14824 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nishio, N., Okawa, Y., Sakurai, H. & Isobe, K. Neutrophil depletion delays wound repair in aged mice. Age (Dordr.) 30, 11–19 (2008).

    CAS  Google Scholar 

  99. Paris, A. J. et al. Neutrophils promote alveolar epithelial regeneration by enhancing type II pneumocyte proliferation in a model of acid-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L1062–L1075 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Neely, C. J. et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12 neutrophil polarization. PLoS ONE 9, e85623 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Tsuda, Y. et al. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21, 215–226 (2004).

    CAS  PubMed  Google Scholar 

  102. Massena, S. et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 126, 2016–2026 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439 (2010).

    CAS  PubMed  Google Scholar 

  105. Forbes, S. J. & Rosenthal, N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20, 857–869 (2014).

    CAS  PubMed  Google Scholar 

  106. Benelli, R., Albini, A. & Noonan, D. Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chem. Immunol. Allergy 83, 167–181 (2003).

    CAS  PubMed  Google Scholar 

  107. Christoffersson, G. et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120, 4653–4662 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gong, Y. & Koh, D. R. Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res. 339, 437–448 (2010).

    PubMed  Google Scholar 

  109. Christoffersson, G. et al. Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets. Diabetes 59, 2569–2578 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Koczulla, R. et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 111, 1665–1672 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    CAS  PubMed  Google Scholar 

  112. Wilgus, T. A., Roy, S. & McDaniel, J. C. Neutrophils and wound repair: positive actions and negative reactions. Adv. Wound Care (New Rochelle) 2, 379–388 (2013).

    PubMed Central  Google Scholar 

  113. Hristov, M. et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ. Res. 100, 590–597 (2007).

    CAS  PubMed  Google Scholar 

  114. Soehnlein, O. et al. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci. Transl Med. 3, 103ra98 (2011).

    PubMed  PubMed Central  Google Scholar 

  115. Salvado, M. D., Di Gennaro, A., Lindbom, L., Agerberth, B. & Haeggström, J. Z. Cathelicidin LL-37 induces angiogenesis via PGE2–EP3 signaling in endothelial cells, in vivo inhibition by aspirin. Arterioscler. Thromb. Vasc. Biol. 33, 1965–1972 (2013).

    CAS  PubMed  Google Scholar 

  116. Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2016). On the basis of continued neutrophil depletion, this study establishes the beneficial effects of neutrophils during healing after myocardial infarction.

    Google Scholar 

  117. Schloss, M. J. et al. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Mol. Med. 8, 937–948 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, R. et al. Dextran sulphate sodium increases splenic Gr1+CD11b+ cells which accelerate recovery from colitis following intravenous transplantation. Clin. Exp. Immunol. 164, 417–427 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kühl, A. A. et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133, 1882–1892 (2007).

    PubMed  Google Scholar 

  120. Otte, J. M. et al. Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity. Regul. Pept. 156, 104–117 (2009).

    CAS  PubMed  Google Scholar 

  121. Mangino, M. J., Brounts, L., Harms, B. & Heise, C. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins Other Lipid Mediat. 79, 84–92 (2006).

    CAS  PubMed  Google Scholar 

  122. Fiorucci, S. et al. A β-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc. Natl Acad. Sci. USA 101, 15736–15741 (2004).

    CAS  PubMed  Google Scholar 

  123. Fournier, B. M. & Parkos, C. A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5, 354–366 (2012).

    CAS  PubMed  Google Scholar 

  124. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wildhagen, K. C. et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 123, 1098–1101 (2014).

    CAS  PubMed  Google Scholar 

  127. Saffarzadeh, M. & Preissner, K. T. Fighting against the dark side of neutrophil extracellular traps in disease: manoeuvres for host protection. Curr. Opin. Hematol. 20, 3–9 (2013).

    CAS  PubMed  Google Scholar 

  128. Barnado, A., Crofford, L. J. & Oates, J. C. At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J. Leukoc. Biol. 99, 265–278 (2016).

    CAS  PubMed  Google Scholar 

  129. Rossaint, J. & Zarbock, A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J. Innate Immun. 5, 348–357 (2013).

    CAS  PubMed  Google Scholar 

  130. Sager, H. B. et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl Med. 8, 342ra80 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Schmitt, M. M. et al. Endothelial junctional adhesion molecule-A guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 129, 66–76 (2014).

    CAS  PubMed  Google Scholar 

  132. Kempf, T. et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 17, 581–588 (2011).

    CAS  PubMed  Google Scholar 

  133. Robertson, A. L. et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci. Transl Med. 6, 225ra29 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat. Med. 12, 1056–1064 (2006).

    CAS  PubMed  Google Scholar 

  135. Sydlik, U. et al. Recovery of neutrophil apoptosis by ectoine: a new strategy against lung inflammation. Eur. Respir. J. 41, 433–442 (2013).

    CAS  PubMed  Google Scholar 

  136. Moon, C., Lee, Y. J., Park, H. J., Chong, Y. H. & Kang, J. L. N-Acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am. J. Respir. Crit. Care Med. 181, 374–387 (2010).

    CAS  PubMed  Google Scholar 

  137. Vucic, E. et al. Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC Cardiovasc. Imaging 5, 819–828 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Viola, J. R. et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent athero-progression in mice. Circ. Res. 119, 1030–1038 (2016). This is the first study to show the therapeutic potential of pro-resolving lipid mediators during atheroprogression.

    CAS  PubMed  Google Scholar 

  139. Börgeson, E. et al. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 22, 125–137 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Wang, Z., Li, J., Cho, J. & Malik, A. B. Prevention of vascular inflammation by nano-particle targeting of adherent neutrophils. Nat. Nanotechnol. 9, 204–210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Dalli, J. et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol. Cell. Proteomics 12, 2205–2219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Gasser, O. & Schifferli, J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104, 2543–2548 (2004).

    CAS  PubMed  Google Scholar 

  143. Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: micro-particles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120, e60–e72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Eken, C. et al. Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J. Biol. Chem. 285, 39914–39921 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Headland, S. E. et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl Med. 7, 315ra190 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Hasenberg, A. et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat. Methods 12, 445–452 (2015).

    CAS  PubMed  Google Scholar 

  147. Bhattacharya, A. et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep. 12, 1731–1739 (2015).

    CAS  PubMed  Google Scholar 

  148. Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016).

    CAS  PubMed  Google Scholar 

  149. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by the Deutsche Forschungsgemeinschaft (grants SO876/6-1, SO876/11-1, SFB914-B08 and SFB1123-A01/A06/B05), the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VIDI project 91712303), the European Union (ITN Evolution) and the European Research Council (AdG°692511 PROVASC). A.H. is supported by the Ministry of Economy, Industry and Competitiveness (MINECO; grant SAF2015-65607-R). The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the MINECO and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Soehnlein or Christian Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Granulopoiesis

The production of mature granulocytes from their progenitors, which predominantly occurs in the bone marrow.

Hypercholesterolaemia

A condition in which there are high levels of cholesterol in the plasma. Values below 200 mg per dl are desirable.

Hyperglycaemia

A condition in which an excessive amount of glucose circulates in the blood plasma. The normal range is 80–120 mg per dl.

Chemokinesis

An undirected, motile response of cells that is elicited by a chemical stimulus.

Neutrophil priming

A state of enhanced neutrophil reactivity induced by molecules that by themselves do not activate neutrophils, but in conjunction with a pro-inflammatory molecule enhance the responsiveness to this pro-inflammatory molecule.

Healing

Repair of a defect in the absence of the replacement of damaged tissue and achieved with minimal scar tissue.

Specific granule deficiency

A rare congenital immunodeficiency that is mainly caused by mutations in CEBPE (which encodes CCAAT/enhancer-binding protein-ɛ) and leads to the lack of neutrophil granule proteins, such as human neutrophil peptides and human cationic antimicrobial protein 18 (the proform of LL-37).

Efferocytosis

A term that is derived from the Latin word efferre (which means 'to take to the grave' or 'to bury') and describes a process by which dead cells are removed by professional phagocytes.

Scarring

A feature of sites that have experienced tissue damage. Scar tissue remains at the end of the repair process and there is no substantial replacement of damaged tissue.

Regeneration

The complete replacement of damaged tissue with new cells.

Neointima formation

A process that often occurs as a consequence of arterial injury, and involves the proliferation of vascular smooth muscle cells and their migration to the tunica intima, which results in the thickening of arterial walls and a decreased arterial lumen diameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soehnlein, O., Steffens, S., Hidalgo, A. et al. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17, 248–261 (2017). https://doi.org/10.1038/nri.2017.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing