Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell responses to cytomegalovirus

Key Points

  • Cytomegalovirus (CMV) induces large populations of CD8+ T cells that retain effector functions, have an effector memory phenotype and home to peripheral organs. The phenomenon has been termed 'memory inflation' on the basis of longitudinal studies in mouse models.

  • The CMV-specific T cell populations that undergo memory inflation are a subset of those that are primed, and they are maintained owing to persistence of the antigen. The viral peptides that drive these responses seem to be presented by non-professional antigen-presenting cells and are immunoproteasome independent.

  • The expanded CD8+ T cell populations that are observed in CMV infection have a transcriptional profile that is different to that seen in 'exhausted' CD8+ T cells but is similar to that seen in T cells responding to other low-level persistent challenges, such as adenoviral vaccines, in both humans and mice. Using the adenoviral system, conventional T cell responses can acquire features of expanded CMV-specific T cell responses by modifying the peptide context.

  • The CMV-induced CD8+ T cell responses are dependent on CD4+ T cell help and co-stimulatory signals. Such signals are probably required to support the recruitment of effector memory T cells from a pool of central memory T cells, although the precise nature and niche of the non-professional antigen-presenting cells involved are still ill-defined.

  • In elderly populations, the marked expansion of CMV-specific T cells is associated with a failure to control the virus and increased levels of CMV-specific IgG, which are features that have been linked to adverse health outcomes in some large epidemiological studies. Although causal mechanisms have not been defined, local replication of CMV may influence vascular pathology through the activation of inflammatory pathways.

Abstract

Human cytomegalovirus (HCMV) establishes a latent infection that generally remains asymptomatic in immune-competent hosts for decades but can cause serious illness in immune-compromised individuals. The long-term control of CMV requires considerable effort from the host immune system and has a lasting impact on the profile of the immune system. One hallmark of CMV infection is the maintenance of large populations of CMV-specific memory CD8+ T cells — a phenomenon termed memory inflation — and emerging data suggest that memory inflation is associated with impaired immunity in the elderly. In this Review, we discuss the molecular triggers that promote memory inflation, the idea that memory inflation could be considered a natural pathway of T cell maturation that could be harnessed in vaccination, and the broader implications of CMV infection and the T cell responses it elicits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-classical CD8+ T cell memory and CMV infection.
Figure 2: Dynamic features of memory inflation.
Figure 3: Requirements for memory inflation.
Figure 4: CMV, memory inflation and ageing.

Similar content being viewed by others

References

  1. Borysiewicz, L. K. et al. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J. Exp. Med. 168, 919–931 (1988).

    CAS  PubMed  Google Scholar 

  2. Wills, M. R. et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J. Virol. 70, 7569–7579 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gillespie, G. M. et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J. Virol. 74, 8140–8150 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sylwester, A. W. et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673–685 (2005). This paper shows the full breadth and magnitude of responses to HCMV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson, S. E., Mason, G. M., Okecha, G., Sissons, J. G. & Wills, M. R. Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J. Virol. 88, 10894–10908 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Komatsu, H. et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun. Ageing 3, 11 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. Komatsu, H., Sierro, S., Cuero, A. V. & Klenerman, P. Population analysis of antiviral T cell responses using MHC class I-peptide tetramers. Clin. Exp. Immunol. 134, 9–12 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Karrer, U. et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170, 2022–2029 (2003).

    CAS  PubMed  Google Scholar 

  9. Holtappels, R., Pahl-Seibert, M. F., Thomas, D. & Reddehase, M. J. Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62Llo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J. Virol. 74, 11495–11503 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sylwester, A. et al. A new perspective of the structural complexity of HCMV-specific T cell responses. Mech. Ageing Dev. http://dx.doi.org/10.1016/j.mad.2016.03.002 (2016).

  11. Khan, N., Cobbold, M., Keenan, R. & Moss, P. A. Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J. Infect. Dis. 185, 1025–1034 (2002).

    CAS  PubMed  Google Scholar 

  12. Ward, S. M. et al. Virus-specific CD8+ T lymphocytes within the normal human liver. Eur. J. Immunol. 34, 1526–1531 (2004).

    CAS  PubMed  Google Scholar 

  13. Akulian, J. A. et al. High-quality CMV-specific CD4+ memory is enriched in the lung allograft and is associated with mucosal viral control. Am. J. Transplant 13, 146–156 (2013).

    CAS  PubMed  Google Scholar 

  14. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    CAS  PubMed  Google Scholar 

  15. Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. & Davis, M. M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36, 142–152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hertoghs, K. M. et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Invest. 120, 4077–4090 (2010). This paper reveals the distinct gene expression patterns in virus-specific CD8+ T cells induced by HCMV infection in a longitudinal study.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boehme, S. A., Lio, F. M., Maciejewski-Lenoir, D., Bacon, K. B. & Conlon, P. J. The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J. Immunol. 165, 397–403 (2000).

    CAS  PubMed  Google Scholar 

  18. Humphreys, I. R. et al. Biphasic role of 4-1BB in the regulation of mouse cytomegalovirus-specific CD8+ T cells. Eur. J. Immunol. 40, 2762–2768 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Starck, L., Scholz, C., Dorken, B. & Daniel, P. T. Costimulation by CD137/4-1BB inhibits T cell apoptosis and induces Bcl-xL and c-FLIP(short) via phosphatidylinositol 3-kinase and AKT/protein kinase B. Eur. J. Immunol. 35, 1257–1266 (2005).

    PubMed  Google Scholar 

  20. van Stijn, A. et al. Human cytomegalovirus infection induces a rapid and sustained change in the expression of NK cell receptors on CD8+ T cells. J. Immunol. 180, 4550–4560 (2008).

    CAS  PubMed  Google Scholar 

  21. Young, N. T. & Uhrberg, M. KIR expression shapes cytotoxic repertoires: a developmental program of survival. Trends Immunol. 23, 71–75 (2002).

    CAS  PubMed  Google Scholar 

  22. Tchilian, E. Z. & Beverley, P. C. Altered CD45 expression and disease. Trends Immunol. 27, 146–153 (2006).

    CAS  PubMed  Google Scholar 

  23. Lang, A. & Nikolich-Zugich, J. Functional CD8 T cell memory responding to persistent latent infection is maintained for life. J. Immunol. 187, 3759–3768 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Isa, A. et al. Prolonged activation of virus-specific CD8+T cells after acute B19 infection. PLoS Med. 2, e343 (2005).

    PubMed  PubMed Central  Google Scholar 

  25. Simmons, R. et al. Evolution of CD8+ T cell responses after acute PARV4 infection. J. Virol. 87, 3087–3096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolinger, B. et al. Adenoviral vector vaccination induces a conserved program of CD8+ T cell memory differentiation in mouse and man. Cell Rep. 13, 1578–1588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  28. Cui, W. & Kaech, S. M. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151–166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thome, J. J. & Farber, D. L. Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol. 36, 428–435 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Frebel, H., Richter, K. & Oxenius, A. How chronic viral infections impact on antigen-specific T-cell responses. Eur. J. Immunol. 40, 654–663 (2010).

    CAS  PubMed  Google Scholar 

  33. Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013).

    CAS  PubMed  Google Scholar 

  34. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    CAS  PubMed  Google Scholar 

  36. Seckert, C. K. et al. Viral latency drives 'memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med. Microbiol. Immunol. 201, 551–566 (2012).

    PubMed  Google Scholar 

  37. Liu, X. F. et al. Epigenetic control of cytomegalovirus latency and reactivation. Viruses 5, 1325–1345 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Torti, N. & Oxenius, A. T cell memory in the context of persistent herpes viral infections. Viruses 4, 1116–1143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Snyder, C. M. Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8+ T cells during cytomegalovirus infection. Immunol. Res. 51, 195–204 (2011).

    CAS  PubMed  Google Scholar 

  40. Snyder, C. M. et al. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29, 650–659 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Torti, N., Walton, S. M., Brocker, T., Rulicke, T. & Oxenius, A. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog. 7, e1002313 (2011). This paper shows that MCMV antigen presentation in lymph node non-haematopoietic cells drives inflation of MCMV-specific memory CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Quinn, M. et al. Memory T cells specific for murine cytomegalovirus re-emerge after multiple challenges and recapitulate immunity in various adoptive transfer scenarios. J. Immunol. 194, 1726–1736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, C. J., Turula, H. & Snyder, C. M. Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog. 10, e1004233 (2014). This paper shows that inflation of MCMV-specific memory CD8+ T cells is driven by viral antigen presented by cells that are accessible to the blood supply.

    PubMed  PubMed Central  Google Scholar 

  44. Mekker, A. et al. Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog. 8, e1002850 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Loewendorf, A. I., Arens, R., Purton, J. F., Surh, C. D. & Benedict, C. A. Dissecting the requirements for maintenance of the CMV-specific memory T-cell pool. Viral Immunol. 24, 351–355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Seckert, C. K. et al. Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J. Gen. Virol. 92, 1994–2005 (2011).

    CAS  PubMed  Google Scholar 

  47. Snyder, C. M., Cho, K. S., Bonnett, E. L., Allan, J. E. & Hill, A. B. Sustained CD8+ T cell memory inflation after infection with a single-cycle cytomegalovirus. PLoS Pathog. 7, e1002295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Redeker, A., Welten, S. P. & Arens, R. Viral inoculum dose impacts memory T-cell inflation. Eur. J. Immunol. 44, 1046–1057 (2014).

    CAS  PubMed  Google Scholar 

  49. Beswick, M., Pachnio, A., Al-Ali, A., Sweet, C. & Moss, P. A. An attenuated temperature-sensitive strain of cytomegalovirus (tsm5) establishes immunity without development of CD8+ T cell memory inflation. J. Med. Virol. 85, 1968–1974 (2013).

    CAS  PubMed  Google Scholar 

  50. Remmerswaal, E. B. et al. Clonal evolution of CD8+ T cell responses against latent viruses: relationship among phenotype, localization, and function. J. Virol. 89, 568–580 (2015).

    PubMed  Google Scholar 

  51. Pourgheysari, B. et al. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J. Virol. 81, 7759–7765 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arens, R. et al. Cutting edge: murine cytomegalovirus induces a polyfunctional CD4 T cell response. J. Immunol. 180, 6472–6476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Arens, R. et al. Differential B7-CD28 costimulatory requirements for stable and inflationary mouse cytomegalovirus-specific memory CD8 T cell populations. J. Immunol. 186, 3874–3881 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Welten, S. P. et al. CD27-CD70 costimulation controls T cell immunity during acute and persistent cytomegalovirus infection. J. Virol. 87, 6851–6865 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Welten, S. P. et al. The viral context instructs the redundancy of costimulatory pathways in driving CD8+ T cell expansion. eLife 4 (2015).

  56. Humphreys, I. R. et al. OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T Cells: a CD4-dependent mechanism. J. Immunol. 179, 2195–2202 (2007).

    CAS  PubMed  Google Scholar 

  57. Waller, E. C. et al. Differential costimulation through CD137 (4-1BB) restores proliferation of human virus-specific “effector memory” (CD28 CD45RAHI) CD8+ T cells. Blood 110, 4360–4366 (2007). References 55–57 indicate the specific co-stimulatory requirements involved in CMV-specific memory using human in vitro and mouse in vivo models.

    CAS  PubMed  Google Scholar 

  58. Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bachmann, M. F., Wolint, P., Walton, S., Schwarz, K. & Oxenius, A. Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur. J. Immunol. 37, 1502–1512 (2007).

    CAS  PubMed  Google Scholar 

  60. Walton, S. M., Torti, N., Mandaric, S. & Oxenius, A. T-cell help permits memory CD8+ T-cell inflation during cytomegalovirus latency. Eur. J. Immunol. 41, 2248–2259 (2011).

    CAS  PubMed  Google Scholar 

  61. Redeker, A. et al. The quantity of autocrine IL-2 governs the expansion potential of CD8+ T cells. J. Immunol. 195, 4792–4801 (2015).

    CAS  PubMed  Google Scholar 

  62. Frohlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324, 1576–1580 (2009).

    PubMed  Google Scholar 

  63. Yi, J. S., Du, M. & Zajac, A. J. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324, 1572–1576 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Patterson, J., Jesser, R. & Weinberg, A. Distinctive in vitro effects of T-cell growth cytokines on cytomegalovirus-stimulated T-cell responses of HIV-infected HAART recipients. Virology 378, 48–57 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Leeuwen, E. M. et al. IL-7 receptor α chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 106, 2091–2098 (2005).

    CAS  PubMed  Google Scholar 

  67. Munks, M. W. et al. Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J. Immunol. 177, 450–458 (2006).

    CAS  PubMed  Google Scholar 

  68. Dekhtiarenko, I., Jarvis, M. A., Ruzsics, Z. & Cicin-Sain, L. The context of gene expression defines the immunodominance hierarchy of cytomegalovirus antigens. J. Immunol. 190, 3399–3409 (2013).

    CAS  PubMed  Google Scholar 

  69. Grzimek, N. K., Dreis, D., Schmalz, S. & Reddehase, M. J. Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J. Virol. 75, 2692–2705 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Munks, M. W. et al. Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J. Immunol. 176, 3760–3766 (2006).

    CAS  PubMed  Google Scholar 

  71. Torti, N., Walton, S. M., Murphy, K. M. & Oxenius, A. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur. J. Immunol. 41, 2612–2618 (2011).

    CAS  PubMed  Google Scholar 

  72. Busche, A. et al. Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. J. Immunol. 190, 2767–2777 (2013).

    CAS  PubMed  Google Scholar 

  73. Snyder, C. M., Allan, J. E., Bonnett, E. L., Doom, C. M. & Hill, A. B. Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8+ T cells. PLoS ONE 5, e9681 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Hutchinson, S. et al. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PLoS ONE 6, e14646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Van den Eynde, B. J. & Morel, S. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr. Opin. Immunol. 13, 147–153 (2001).

    CAS  PubMed  Google Scholar 

  76. Farrington, L. A., Smith, T. A., Grey, F., Hill, A. B. & Snyder, C. M. Competition for antigen at the level of the APC is a major determinant of immunodominance during memory inflation in murine cytomegalovirus infection. J. Immunol. 190, 3410–3416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Turula, H., Smith, C. J., Grey, F., Zurbach, K. A. & Snyder, C. M. Competition between T cells maintains clonal dominance during memory inflation induced by MCMV. Eur. J. Immunol. 43, 1252–1263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Iancu, E. M. et al. Clonotype selection and composition of human CD8 T cells specific for persistent herpes viruses varies with differentiation but is stable over time. J. Immunol. 183, 319–331 (2009).

    CAS  PubMed  Google Scholar 

  79. Weekes, M. P., Wills, M. R., Mynard, K., Carmichael, A. J. & Sissons, J. G. The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo. J. Virol. 73, 2099–2108 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schwanninger, A. et al. Age-related appearance of a CMV-specific high-avidity CD8+ T cell clonotype which does not occur in young adults. Immun. Ageing 5, 14 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Miconnet, I. et al. Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure. J. Immunol. 186, 7039–7049 (2011).

    CAS  PubMed  Google Scholar 

  82. Wang, G. C., Dash, P., McCullers, J. A., Doherty, P. C. & Thomas, P. G. T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Transl Med. 4, 128ra42 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. Day, E. K. et al. Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J. Immunol. 179, 3203–3213 (2007).

    CAS  PubMed  Google Scholar 

  84. Trautmann, L. et al. Selection of T cell clones expressing high-affinity public TCRs within human cytomegalovirus-specific CD8 T cell responses. J. Immunol. 175, 6123–6132 (2005).

    CAS  PubMed  Google Scholar 

  85. Griffiths, S. J. et al. Age-associated increase of low-avidity cytomegalovirus-specific CD8+ T cells that re-express CD45RA. J. Immunol. 190, 5363–5372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wynn, K. K. et al. Impact of clonal competition for peptide-MHC complexes on the CD8+ T-cell repertoire selection in a persistent viral infection. Blood 111, 4283–4292 (2008).

    CAS  PubMed  Google Scholar 

  87. Reddehase, M. J., Mutter, W., Munch, K., Buhring, H. J. & Koszinowski, U. H. CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J. Virol. 61, 3102–3108 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Alterio de Goss, M. et al. Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J. Virol. 72, 7733–7744 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Polic, B. et al. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188, 1047–1054 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jonjic, S. et al. Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J. Exp. Med. 179, 1713–1717 (1994).

    CAS  PubMed  Google Scholar 

  91. Jonjic, S., Pavic, I., Lucin, P., Rukavina, D. & Koszinowski, U. H. Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J. Virol. 64, 5457–5464 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sumaria, N. et al. The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol. Cell Biol. 87, 559–566 (2009).

    CAS  PubMed  Google Scholar 

  93. van Dommelen, S. L. et al. Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25, 835–848 (2006).

    CAS  PubMed  Google Scholar 

  94. Lucin, P., Pavic, I., Polic, B., Jonjic, S. & Koszinowski, U. H. γ interferon-dependent clearance of cytomegalovirus infection in salivary glands. J. Virol. 66, 1977–1984 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jonjic, S., Mutter, W., Weiland, F., Reddehase, M. J. & Koszinowski, U. H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J. Exp. Med. 169, 1199–1212 (1989).

    CAS  PubMed  Google Scholar 

  96. Walton, S. M. et al. Absence of cross-presenting cells in the salivary gland and viral immune evasion confine cytomegalovirus immune control to effector CD4 T cells. PLoS Pathog. 7, e1002214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Britt, W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr. Top. Microbiol. Immunol. 325, 417–470 (2008).

    CAS  PubMed  Google Scholar 

  98. Riddell, S. R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257, 238–241 (1992).

    CAS  PubMed  Google Scholar 

  99. Ebert, S. et al. Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med. Microbiol. Immunol. 201, 527–539 (2012).

    PubMed  Google Scholar 

  100. Holtappels, R., Bohm, V., Podlech, J. & Reddehase, M. J. CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med. Microbiol. Immunol. 197, 125–134 (2008).

    PubMed  Google Scholar 

  101. Jeitziner, S. M., Walton, S. M., Torti, N. & Oxenius, A. Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection. Eur. J. Immunol. 43, 2886–2895 (2013).

    CAS  PubMed  Google Scholar 

  102. Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    CAS  PubMed  Google Scholar 

  103. Gerna, G. et al. Monitoring of human cytomegalovirus-specific CD4 and CD8 T-cell immunity in patients receiving solid organ transplantation. Am. J. Transplant 6, 2356–2364 (2006).

    CAS  PubMed  Google Scholar 

  104. Einsele, H. et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99, 3916–3922 (2002).

    CAS  PubMed  Google Scholar 

  105. Fuji, S., Kapp, M., Grigoleit, G. U. & Einsele, H. Adoptive immunotherapy with virus-specific T cells. Best Pract. Res. Clin. Haematol. 24, 413–419 (2011).

    CAS  PubMed  Google Scholar 

  106. Mui, T. S., Kapp, M., Einsele, H. & Grigoleit, G. U. T-cell therapy for cytomegalovirus infection. Curr. Opin. Organ. Transplant 15, 744–750 (2010).

    PubMed  Google Scholar 

  107. Boeckh, M., Murphy, W. J. & Peggs, K. S. Recent advances in cytomegalovirus: an update on pharmacologic and cellular therapies. Biol. Blood Marrow Transplant 21, 24–29 (2015).

    CAS  PubMed  Google Scholar 

  108. Simon, C. O. et al. CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J. Virol. 80, 10436–10456 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bigley, A. B., Spielmann, G., Agha, N., O'Connor, D. P. & Simpson, R. J. Dichotomous effects of latent CMV infection on the phenotype and functional properties of CD8+ T-cells and NK-cells. Cell. Immunol. 300, 26–32 (2015).

    PubMed  Google Scholar 

  110. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. 7, 501–510 (2014).

    CAS  PubMed  Google Scholar 

  112. van Aalderen, M. C., Remmerswaal, E. B., ten Berge, I. J. & van Lier, R. A. Blood and beyond: properties of circulating and tissue-resident human virus-specific alphabeta CD8+ T cells. Eur. J. Immunol. 44, 934–944 (2014).

    PubMed  Google Scholar 

  113. Thom, J. T., Weber, T. C., Walton, S. M., Torti, N. & Oxenius, A. The salivary gland acts as a sink for tissue-resident memory CD8+ T cells, facilitating protection from local cytomegalovirus infection. Cell Rep. 13, 1125–1136 (2015).

    CAS  PubMed  Google Scholar 

  114. Smith, C. J., Caldeira-Dantas, S., Turula, H. & Snyder, C. M. Murine CMV infection induces the continuous production of mucosal resident T cells. Cell Rep. 13, 1137–1148 (2015). This paper describes recent findings on tissue-resident memory T cells in MCMV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lu, X., Pinto, A. K., Kelly, A. M., Cho, K. S. & Hill, A. B. Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J. Virol. 80, 4200–4202 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Holtappels, R. et al. Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J. Virol. 82, 5781–5796 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bohm, V. et al. Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med. Microbiol. Immunol. 197, 135–144 (2008).

    PubMed  Google Scholar 

  118. Nauerth, M. et al. TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci. Transl Med. 5, 192ra87 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Scheinberg, P. et al. The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor. Blood 114, 5071–5080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bunde, T. et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J. Exp. Med. 201, 1031–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Northfield, J., Lucas, M., Jones, H., Young, N. T. & Klenerman, P. Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8 T cells correlates with 'memory inflation' in human cytomegalovirus infection. Immunol. Cell Biol. 83, 182–188 (2005).

    CAS  PubMed  Google Scholar 

  122. Khan, N. et al. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J. Immunol. 173, 7481–7489 (2004).

    CAS  PubMed  Google Scholar 

  123. Stowe, R. P. et al. Chronic herpesvirus reactivation occurs in aging. Exp. Gerontol. 42, 563–570 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Parry, H. M. et al. Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun. Ageing 13, 1 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Gkrania-Klotsas, E. et al. Higher immunoglobulin G antibody levels against cytomegalovirus are associated with incident ischemic heart disease in the population-based EPIC-Norfolk cohort. J. Infect. Dis. 206, 1897–1903 (2012).

    CAS  PubMed  Google Scholar 

  126. Roberts, E. T., Haan, M. N., Dowd, J. B. & Aiello, A. E. Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am. J. Epidemiol. 172, 363–371 (2010). References 125 and 126 describe the association between high levels of CMV-specific IgG and clinical outcomes in large cohort studies.

    PubMed  PubMed Central  Google Scholar 

  127. Reunanen, A. et al. Enterovirus, mycoplasma and other infections as predictors for myocardial infarction. J. Intern. Med. 252, 421–429 (2002).

    CAS  PubMed  Google Scholar 

  128. Arai, Y. et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2, 1549–1558 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. van de Berg, P. J., Yong, S. L., Remmerswaal, E. B., van Lier, R. A. & ten Berge, I. J. Cytomegalovirus-induced effector T cells cause endothelial cell damage. Clin. Vaccine Immunol. 19, 772–779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wikby, A. et al. The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech. Ageing Dev. 127, 695–704 (2006).

    CAS  PubMed  Google Scholar 

  131. Strindhall, J. et al. The inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: the Swedish HEXA immune study. Age (Dordr) 35, 985–991 (2013).

    CAS  Google Scholar 

  132. Spyridopoulos, I. et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell 15, 389–392 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Briceno, O. et al. Reduced naive CD8 T-cell priming efficacy in elderly adults. Aging Cell 15, 14–21 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. McElhaney, J. E. et al. Predictors of the antibody response to influenza vaccination in older adults with type 2 diabetes. BMJ Open Diabetes Res. Care 3, e000140 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. O'Connor, D. et al. The effect of chronic cytomegalovirus infection on pneumococcal vaccine responses. J. Infect. Dis. 209, 1635–1641 (2014).

    CAS  PubMed  Google Scholar 

  136. Frasca, D., Diaz, A., Romero, M., Landin, A. M. & Blomberg, B. B. Cytomegalovirus (CMV) seropositivity decreases B cell responses to the influenza vaccine. Vaccine 33, 1433–1439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    CAS  PubMed  Google Scholar 

  138. Yager, E. J. et al. γ-Herpesvirus-induced protection against bacterial infection is transient. Viral Immunol. 22, 67–72 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Huygens, A., Dauby, N., Vermijlen, D. & Marchant, A. Immunity to cytomegalovirus in early life. Front. Immunol. 5, 552 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Murphy, A. A., Redwood, A. J. & Jarvis, M. A. Self-disseminating vaccines for emerging infectious diseases. Expert Rev. Vaccines 15, 31–39 (2016).

    CAS  PubMed  Google Scholar 

  141. Karrer, U. et al. Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses. J. Virol. 78, 2255–2264 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hansen, S. G. et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340, 1237874 (2013). References 142–144 show the unconventional and highly potent T cell responses that can be induced in simian infection with CMV-based vectors.

    PubMed  Google Scholar 

  145. Bolinger, B. et al. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector. J. Immunol. 190, 4162–4174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss Federal Institute of Technology in Zürich (ETH Zürich) and the Swiss National Science Foundation (310030_146140 to A.O.), the UK Medical Research Council (MRC), the Wellcome Trust (WT 091663MA to P.K.), the NIHR Biomedical Research Centre Oxford, Oxford Martin School, an NIHR Senior Investigator award (to P.K.) and the US NIH (U19AI082630). The authors are grateful to the members of the Oxenius and Klenerman groups, especially N. Torti, J. Thom, N. Baumann, L. Li, A. Highton, C. Hutchings and J. Colston for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Klenerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

MHC class I tetramers

Biotinylated monomeric MHC class I molecules that are folded with a specific peptide in the binding groove and tetramerized with a fluorescently labelled streptavidin molecule. Tetramers bind to T cells expressing T cell receptors that are specific for the cognate peptide.

ELISpot assays

(Enzyme-linked immunosorbent spot assays). A method based on antibody capture and used to assess the numbers of CD4+ and CD8+ T cells that secrete a particular cytokine (often interferon-γ).

Central memory T cells

(TCM cells). Antigen-experienced T cells expressing cell surface receptors rthat are equired for homing to secondary lymphoid organs. These cells are generally thought to be long-lived and can serve as precursors for effector T cells in recall responses.

Effector memory T cells

(TEM cells). Antigen-experienced T cells that lack lymph node-homing receptors but express receptors that enable homing to inflamed tissues. TEM cells can exert immediate effector functions without the need for further differentiation.

Mass cytometry

Flow cytometry using antibodies that are tagged with heavy metal ions, which are detected by mass spectrometry (as opposed to classical flow cytometry, which uses antibodies tagged with fluorophores and optical detection). Mass cytometry allows large numbers of phenotypic markers to be assessed simultaneously on single cells.

T cell exhaustion

The condition of functionally impaired antigen-specific T cells, typified by increased surface expression of programmed cell death protein 1 and other co-inhibitory receptors, which occurs in the context of a persistently high antigen load. The defects in effector T cell function include a progressive decrease in their ability to produce cytokines, loss of proliferative capacity and decreased cytotoxicity, and can result in apoptotic cell death.

Tissue-resident memory T cells

(TRM cells). Cells that are generated primarily in non-lymphoid tissues and stably reside in these tissues while being disconnected from the circulation, where they provide immediate protection against local infections.

Spread-defective single round virus

A virus that can infect cells but cannot produce fully productive infectious particles and propagate in vivo. It nevertheless expresses viral antigens in the infected cell.

Immunoproteasome

The standard proteasome is composed of 14 α- and β-subunits, of which three (β1, β2 and β5) are involved in peptide-bond cleavage. Interferon-γ induces the expression of the immunosubunits β1i, β2i and β5i, which can replace the catalytic subunits of the standard proteasome to generate the immunoproteasome, which has distinct cleavage-site preferences.

Public TCRs

T cell receptors (TCRs) that are present and dominant in immune responses to a specific epitope in the majority of individuals.

Private TCRs

T cell receptors (TCRs) that are present and dominant in immune responses to a specific epitope; these immune responses are rarely observed in the majority of individuals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klenerman, P., Oxenius, A. T cell responses to cytomegalovirus. Nat Rev Immunol 16, 367–377 (2016). https://doi.org/10.1038/nri.2016.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing