RESEARCH HIGHLIGHTS

Nature Reviews Immunology | Published online 30 Mar 2016; doi:10.1038/nri.2016.37

T CELL RESPONSES

Autophagy maintains metabolic order

Autophagy is the process through which intracellular components are targeted to lysosomes for degradation and recycling — it is essential for maintaining cellular homeostasis, particularly during infection or metabolic stress. Two complementary studies describe a crucial role for autophagy in regulatory T (T_{reg}) cells and T helper 2 (T_{H} 2) cells. Interestingly, defective autophagy impairs survival and lineage stability in peripheral T_{reg} cells but leads to expansion of T_{H} 2 cell populations in a cell-intrinsic manner.

Wei et al. found that peripheral T_{Reg} cells show higher autophagy activity compared with naive CD4+ T cells. They generated mice with a T_{Reg} cell-specific deletion of the essential autophagy-related 7 (Atg7) gene (Foxp3^{Cre}Atg7^{fl/fl} mice) and found that these animals developed lymphoid hyperplasia by ~3 months of age and had increased proportions of effector/memory T cells compared with controls. Effector/memory T cells from Foxp3^{Cre}Atg7^{fl/fl} mice produced aberrantly high levels of interferon-y (IFNy) and interleukin-17 (IL-17), and the animals developed severe systemic inflammation by ~5 months of age. Compared with controls, Foxp3^{Cre}Atg7^{fl/fl} mice had lower

proportions of T_{Reg} cells in the spleen, lymph nodes and, in particular, the colon but normal proportions of thymic T_{Reg} cells. Similar phenotypes were observed in mice with a T_{Reg} cell-specific deletion of *Atg5*, another essential autophagy gene.

Further analyses showed that ATG7 is not essential for T_{Reg} cell proliferation but instead promotes their survival and lineage stability. ATG7deficient T_{Reg} cells showed higher rates of apoptosis and a failure to maintain FOXP3 expression, which was associated with the upregulation of IFNy and other inflammatory cytokines. Autophagy maintained T_{Reg} cell stability and survival partly by restraining mTOR complex 1 (mTORC1) activity following T_{Reg} cell activation through T cell receptors or other stimulatory pathways. Aberrant mTORC1 activity in ATG7-deficient T_{Reg} cells was associated with increased MYC expression and heightened glycolytic metabolism; pharmacological blockade of MYC or glycolysis partially restored lineage stability in these cells. Furthermore, activated T_{Reg} cells were more sensitive to apoptosis than quiescent T_{Reg} cells in response to autophagy deficiency. Therefore, autophagy preferentially supports the survival and lineage stability of activated T_{Reg} cells.

Kabat et al. examined how the inflammatory bowel disease (IBD)associated gene autophagy-related 16-like 1 (Atg16l1) affects intestinal T cell responses. They generated mice with a CD4+ T cell-specific deletion of Atg16l1 (Atg16l1^{ΔCD4} mice) and found that these animals developed splenomegaly, lymphadenopathy and chronic intestinal pathology by ~ 5 months of age. Younger $Atg16l1^{\Delta CD4}$ mice had lower T cell counts in peripheral lymphoid organs and the intestine compared with controls, but developed exacerbated disease in a model of IBD. Closer analysis showed that young $Atg16l1^{\Delta CD4}$ mice had decreased numbers of $\rm T_{\rm H}1$ and $\rm T_{\rm H}17$ cells, and reduced peripheral T_{Reg} cell counts (particularly in the intestine) but had

higher $T_{\rm H}2$ cell numbers. In keeping with this, ageing *Atg16l1*^{Δ CD4} mice developed an aberrant type 2 antibody response against dietary antigens and commensal bacteria.

The authors found that T_{Reg} cells from Atg16l1^{ΔCD4} mice showed intrinsic survival defects, whereas $T_{H}2$ cells from these animals showed comparable or improved survival in relation to wild-type controls. Experiments in which *Atg16l1*^{ΔCD4} mice were reconstituted with wild-type T_{Reg} cells indicated that ATG16L1 regulates T_H2 cell expansion through a cell-intrinsic mechanism, rather than indirectly through T_{Reg} cell loss. Kabat et al. next generated mice with a T_{Reg} cell-specific deletion of Atg16l1 (Foxp3^{Cre}Atg16l1^{fl/fl} mice); in agreement with the findings by Wei et al., these animals developed a severe spontaneous systemic inflammation by 5 months of age that was associated with impaired survival and lineage stability of peripheral T_{Reg} cells. Also in keeping with the study by Wei et al., Kabat et al. found that ATG16L1-deficient T_{Reg} cells showed augmented glycolytic activity; this was most apparent in intestinal $\rm T_{\rm Reg}$ cells. The authors noted that $\rm T_{\rm H}2$ cells have enhanced glycolytic metabolism compared with T_{Reg} cells under homeostatic conditions and propose that this accounts for why $T_H 2$ cells are more resistant to the metabolic consequences of blocking autophagy.

These studies suggest that drugs targeting autophagy could be useful for manipulating peripheral CD4⁺ T cell responses in the clinic — indeed, in a mouse tumour model, Wei *et al.* observed that $Foxp3^{Cre}Atg7^{Al/I}$ mice have reduced tumour cell growth owing to defective T_{Reg} cell function at the tumour site.

Yvonne Bordon

 $\label{eq:org} \begin{array}{l} \textbf{ORIGINAL ARTICLES} \ Wei, J. et al. \ Autophagy \\ enforces functional integrity of regulatory T cells \\ by coupling environmental cues and metabolic \\ homeostasis. \ Nat. \ Immunol. \ 17, 277-285 (2016) \ \\ Kabat, A. M. et al. \ The autophagy gene \ Atg16l1 \\ differentially regulates \ T_{Reg} \ and \ T_{H_2} \ cells \ to \ control \\ intestinal \ inflammation. \ elife \ http://dx.doi.org/ \\ 10.7554/el.ife.12444 (2016) \end{array}$

drugs targeting autophagy could be useful for manipulating peripheral CD4⁺ T cell responses in the clinic