

Autophagy is the process through which intracellular components are targeted to lysosomes for degradation and recycling - it is essential for maintaining cellular homeostasis, particularly during infection or metabolic stress. Two complementary studies describe a crucial role for autophagy in regulating cellular metabolism in regulatory $\mathrm{T}\left(\mathrm{T}_{\text {Reg }}\right)$ cells and T helper 2 $\left(\mathrm{T}_{\mathrm{H}} 2\right)$ cells. Interestingly, defective autophagy impairs survival and lineage stability in peripheral $\mathrm{T}_{\text {Reg }}$ cells but leads to expansion of $\mathrm{T}_{\mathrm{H}} 2$ cell populations in a cell-intrinsic manner.

Wei et al. found that peripheral $\mathrm{T}_{\text {Reg }}$ cells show higher autophagy activity compared with naive $\mathrm{CD} 4^{+}$ T cells. They generated mice with a $\mathrm{T}_{\text {Reg }}$ cell-specific deletion of the essential autophagy-related 7 ($\operatorname{Atg} 7$) gene (Foxp $3{ }^{\text {Cre }} \operatorname{Atg}^{\text {7l/fl }}$ mice) and found that these animals developed lymphoid hyperplasia by ~ 3 months of age and had increased proportions of effector/memory T cells compared with controls. Effector/memory T cells from Foxp $3^{\mathrm{Cre}} \mathrm{Atg}^{1 / 1 / \mathrm{l}}$ mice produced aberrantly high levels of interferon- γ (IFN γ) and interleukin-17 (IL-17), and the animals developed severe systemic inflammation by ~ 5 months of age. Compared with controls, Foxp $3^{\text {Cre }} \operatorname{Atg}^{1 / 1 / \mathrm{I}}$ mice had lower
proportions of $\mathrm{T}_{\text {Reg }}$ cells in the spleen, lymph nodes and, in particular, the colon but normal proportions of thymic $\mathrm{T}_{\text {Reg }}$ cells. Similar phenotypes were observed in mice with a $\mathrm{T}_{\text {Reg }}$ cell-specific deletion of $\operatorname{Atg} 5$, another essential autophagy gene.

Further analyses showed that ATG7 is not essential for $\mathrm{T}_{\text {Reg }}$ cell proliferation but instead promotes their survival and lineage stability. ATG7deficient $\mathrm{T}_{\text {Reg }}$ cells showed higher rates of apoptosis and a failure to maintain FOXP3 expression, which was associated with the upregulation of IFN γ and other inflammatory cytokines. Autophagy maintained $\mathrm{T}_{\text {Reg }}$ cell stability and survival partly by restraining mTOR complex 1 (mTORC1) activity following $\mathrm{T}_{\text {Reg }}$ cell activation through T cell receptors or other stimulatory pathways. Aberrant mTORC1 activity in ATG7-deficient $\mathrm{T}_{\text {Reg }}$ cells was associated with increased MYC expression and heightened glycolytic metabolism; pharmacological blockade of MYC or glycolysis partially restored lineage stability in these cells. Furthermore, activated $\mathrm{T}_{\text {Reg }}$ cells were more sensitive to apoptosis than quiescent $\mathrm{T}_{\text {Reg }}$ cells in response to autophagy deficiency. Therefore, autophagy preferentially supports the survival and lineage stability of activated $\mathrm{T}_{\text {Reg }}$ cells.

Kabat et al. examined how the inflammatory bowel disease (IBD)associated gene autophagy-related 16-like 1 (Atg16l1) affects intestinal T cell responses. They generated mice with a CD4 ${ }^{+} \mathrm{T}$ cell-specific deletion of Atg16l1 (Atg16l1 ${ }^{\triangle \mathrm{CD4} 4}$ mice) and found that these animals developed splenomegaly, lymphadenopathy and chronic intestinal pathology by ~ 5 months of age. Younger Atg $16 l 1^{\triangle \mathrm{CD} 4}$ mice had lower T cell counts in peripheral lymphoid organs and the intestine compared with controls, but developed exacerbated disease in a model of IBD. Closer analysis showed that young Atg16l1 ${ }^{\triangle \mathrm{CD} 4}$ mice had decreased numbers of $\mathrm{T}_{\mathrm{H}} 1$ and $\mathrm{T}_{\mathrm{H}} 17$ cells, and reduced peripheral $\mathrm{T}_{\text {Reg }}$ cell counts (particularly in the intestine) but had
higher $\mathrm{T}_{\mathrm{H}} 2$ cell numbers. In keeping with this, ageing Atg $16 l 1^{\triangle \mathrm{CD} 4}$ mice developed an aberrant type 2 antibody response against dietary antigens and commensal bacteria.

The authors found that $\mathrm{T}_{\text {Reg }}$ cells from Atg16l1 ${ }^{\mathrm{ACD} 4}$ mice showed intrinsic survival defects, whereas $\mathrm{T}_{\mathrm{H}} 2$ cells from these animals showed comparable or improved survival in relation to wild-type controls. Experiments in which Atg16l1 ${ }^{\triangle \mathrm{CD} 4}$ mice were reconstituted with wild-type $\mathrm{T}_{\text {Reg }}$ cells indicated that ATG16L1 regulates $\mathrm{T}_{\mathrm{H}} 2$ cell expansion through a cell-intrinsic mechanism, rather than indirectly through $\mathrm{T}_{\text {Reg }}$ cell loss. Kabat et al. next generated mice with a $\mathrm{T}_{\text {Reg }}$ cell-specific deletion of Atg16l1 (Foxp $3^{\mathrm{Cre}} \mathrm{Atg} 16 \mathrm{ll}^{\text {f/fl }}$ mice); in agreement with the findings by Wei et al., these animals developed a severe spontaneous systemic inflammation by 5 months of age that was associated with impaired survival and lineage stability of peripheral $\mathrm{T}_{\text {Reg }}$ cells. Also in keeping with the study by Wei et al., Kabat et al. found that ATG16L1-deficient $\mathrm{T}_{\text {Reg }}$ cells showed augmented glycolytic activity; this was most apparent in intestinal $\mathrm{T}_{\text {Reg }}$ cells. The authors noted that $\mathrm{T}_{\mathrm{H}} 2$ cells have enhanced glycolytic metabolism compared with $\mathrm{T}_{\text {Reg }}$ cells under homeostatic conditions and propose that this accounts for why $\mathrm{T}_{\mathrm{H}} 2$ cells are more resistant to the metabolic consequences of blocking autophagy.

These studies suggest that drugs targeting autophagy could be useful for manipulating peripheral $\mathrm{CD} 4^{+}$ T cell responses in the clinic - indeed, in a mouse tumour model, Wei et al. observed that $\operatorname{Foxp} 3^{\mathrm{Cre}} \operatorname{Atg} 7^{71 / \mathrm{fl}}$ mice have reduced tumour cell growth owing to defective $\mathrm{T}_{\text {Reg }}$ cell function at the tumour site.

Yvonne Bordon

[^0]
[^0]: ORIGINAL ARTICLES Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277-285 (2016) | Kabat, A. M. et al. The autophagy gene Atg16l1 differentially regulates $T_{\text {Reg }}$ and $T_{H} 2$ cells to control intestinal inflammation. eLife http://dx.doi.org/ 10.7554/eLife. 12444 (2016)

