Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell responses in the central nervous system

Key Points

  • The meningeal linings of the central nervous system (CNS) undergo intense immunosurveillance and have efficient lymphatic drainage. This allows adaptive immune responses to be primed in the deep cervical lymph nodes against antigens derived from the meningeal compartment.

  • T cell responses against CNS-expressed self-antigens may develop as a result of T cells being primed by mimotopes of these self-antigens in the lymph nodes that drain peripheral tissues and the subsequent aberrant homing of such antigen-specific T cells into the CNS compartment.

  • Reactivation of antigen-experienced T cells within the CNS occurs in distinct anatomical compartments: namely, in the perivascular space of parenchymal post-capillary venules, in the meninges and in the choroid plexus. Each site represents a distinct functional compartment owing to the presence of unique types of antigen-presenting cells.

  • Different T helper (TH) cell subsets use distinct homing molecules to gain access to the CNS parenchyma, and this differential usage may determine the preferential homing of TH1 cells and TH17 cells to different parts of the CNS.

  • Within the inflamed CNS, TH cells exhibit a high degree of plasticity, and the molecular basis of this is becoming increasingly understood. For example, the expression of the transcriptional regulator B lymphocyte-induced maturation protein 1 (BLIMP1) is essential for the conversion of pathogenic TH cells into IL-10 producing regulatory T cells.

  • Forkhead box P3 (FOXP3)-expressing regulatory T cells are dispensable for maintaining immune tolerance in the CNS in the steady state, but these cells are indispensable for re-establishing homeostasis in the inflamed CNS.

  • After viral infection of the CNS, self-renewing populations of tissue-resident memory CD8+ T cells (TRM cells) are generated. These TRM cells exhibit a distinct transcriptional and phenotypic profile, and represent an autonomous line of defence that protects against re-infection or recrudescence of latent viral infections in the CNS.

Abstract

T cells are required for immune surveillance of the central nervous system (CNS); however, they can also induce severe immunopathology in the context of both viral infections and autoimmunity. The mechanisms that are involved in the priming and recruitment of T cells to the CNS are only partially understood, but there has been renewed interest in this topic since the 'rediscovery' of lymphatic drainage from the CNS. Moreover, tissue-resident memory T cells have been detected in the CNS and are increasingly recognized as an autonomous line of host defence. In this Review, we highlight the main mechanisms that are involved in the priming and CNS recruitment of CD4+ T cells, CD8+ T cells and regulatory T cells. We also consider the plasticity of T cell responses in the CNS, with a focus on viral infection and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell immunity in the central nervous system.
Figure 2: T cell 'ports of entry' into the central nervous system are characterized by distinct antigen-presenting cell populations.
Figure 3: T helper cell subsets and central nervous system inflammation.
Figure 4: Molecular basis of T helper 17 cell plasticity at sites of inflammation.
Figure 5: Immune surveillance in the central nervous system by different memory T cell populations.

Similar content being viewed by others

References

  1. Williams, K. A., Hart, D. N., Fabre, J. W. & Morris, P. J. Distribution and quantitation of HLA-ABC and DR (Ia) antigens on human kidney and other tissues. Transplantation 29, 274–279 (1980).

    CAS  PubMed  Google Scholar 

  2. Ransohoff, R. M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12, 623–635 (2012).

    CAS  PubMed  Google Scholar 

  3. Engelhardt, B. & Sorokin, L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 31, 497–511 (2009).

    PubMed  Google Scholar 

  4. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  PubMed  Google Scholar 

  5. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood–brain barrier. Cell 163, 1064–1078 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bechmann, I., Galea, I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

    CAS  PubMed  Google Scholar 

  7. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    CAS  PubMed  Google Scholar 

  8. Russo, M. V. & McGavern, D. B. Immune surveillance of the CNS following infection and injury. Trends Immunol. 36, 637–650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010). This paper was the first to demonstrate that the generation but not maintenance of T RM cells in the CNS after viral infection is dependent on antigen recognition.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinbach, K. et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med. 213, 1571–1587 (2016). This paper shows the localization of T RM cells in the CNS after LCMV infection and provides evidence that in the absence of systemic memory T cells T RM cells alone are sufficient to protect the CNS from re-infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    CAS  PubMed  Google Scholar 

  13. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    CAS  PubMed  Google Scholar 

  14. Lueg, G. et al. Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer's disease. Neurobiol. Aging 36, 81–89 (2015).

    CAS  PubMed  Google Scholar 

  15. Saunders, J. A. H. et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson's disease. J. Neuroimmune Pharmacol. 7, 927–938 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lang, H. L. E. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    CAS  PubMed  Google Scholar 

  18. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003). This paper was among the first to show that the tissue tropism of antigen-specific T cells is imprinted by specific APCs. For example, DCs from Peyer's patches, but not splenic DCs, induce the expression of the gut-homing receptors integrin α 4 β 7 and CCR9 on T cells.

    CAS  PubMed  Google Scholar 

  19. Hemmer, B., Kerschensteiner, M. & Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14, 406–419 (2015).

    CAS  PubMed  Google Scholar 

  20. Beecham, A. H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rouvière, H. Anatomy of the Human Lymphatic System (Edwards Bros. Inc., 1938).

    Google Scholar 

  22. Prineas, J. W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203, 1123–1125 (1979).

    CAS  PubMed  Google Scholar 

  23. Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144, 789–801 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Head, J. R. & Griffin, W. S. Functional capacity of solid tissue transplants in the brain: evidence for immunological privilege. Proc. R. Soc. Lond. B Biol. Sci. 224, 375–387 (1985).

    CAS  PubMed  Google Scholar 

  25. Barker, C. F. & Billingham, R. E. The role of afferent lymphatics in the rejection of skin homografts. J. Exp. Med. 128, 197–221 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Locatelli, G. et al. Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat. Neurosci. 15, 543–550 (2012).

    CAS  PubMed  Google Scholar 

  27. Traka, M., Podojil, J. R., McCarthy, D. P., Miller, S. D. & Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci. 19, 65–74 (2016).

    CAS  PubMed  Google Scholar 

  28. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This paper shows the existence of lymphatic vessels in the meninges in whole-mount meningeal preparations, and provides evidence that macromolecules and immune cells from the CSF space are drained into deep cervical lymph nodes via these lymphatic vessels.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Louveau, A., Da Mesquita, S. & Kipnis, J. Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer's disease? Neuron 91, 957–973 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  31. Raper, D., Louveau, A. & Kipnis, J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 39, 581–586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hladky, S. B. & Barrand, M. A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11, 26 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Krishnamoorthy, G. et al. Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis. Nat. Med. 15, 626–632 (2009).

    CAS  PubMed  Google Scholar 

  35. Na, S.-Y. et al. Oligodendrocytes enforce immune tolerance of the uninfected brain by purging the peripheral repertoire of autoreactive CD8+ T cells. Immunity 37, 134–146 (2012).

    CAS  PubMed  Google Scholar 

  36. Fletcher, A. L., Malhotra, D. & Turley, S. J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 32, 12–18 (2011).

    CAS  PubMed  Google Scholar 

  37. Rouhani, S. J. et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat. Commun. 6, 6771 (2015).

    CAS  PubMed  Google Scholar 

  38. Rosenberger, K. et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol. Neurodegener. 10, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Brown, D. A. & Sawchenko, P. E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 502, 236–260 (2007). In this meticulous histological analysis of nascent EAE, the authors show that the earliest T cell infiltration into the CNS occurs at periventricular sites and in superficial white matter structures, which suggests that the earliest infiltrating T cells might enter the CNS parenchyma via the CSF space and not via parenchymal post-capillary venules.

    PubMed  Google Scholar 

  40. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    CAS  PubMed  Google Scholar 

  41. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    PubMed  Google Scholar 

  42. Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    PubMed  Google Scholar 

  43. Kivisäkk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin–VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Prodinger, C. et al. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol. 121, 445–458 (2011).

    CAS  PubMed  Google Scholar 

  46. Bulloch, K. et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Comp. Neurol. 508, 687–710 (2008).

    PubMed  Google Scholar 

  47. Bailey, S. L., Schreiner, B., McMahon, E. J. & Miller, S. D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).

    CAS  PubMed  Google Scholar 

  48. Pinschewer, D. D. et al. T cells can mediate viral clearance from ependyma but not from brain parenchyma in a major histocompatibility class I- and perforin-independent manner. Brain 133, 1054–1066 (2010). This paper shows that virus can be cleared from meningeal cells and ependymal cells by T cells in an MHC class I-independent manner, thus causing minimal immune-mediated damage, whereas parenchymal cells are only cleared of LCMV in a cytotoxic, MHC class I-dependent manner that occurs at the expense of extensive immunopathology.

    PubMed  Google Scholar 

  49. Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988). This is a seminal paper showing that antigen-specific reactivation of incoming T cells in the CNS compartment is mediated by bone marrow-derived APCs and by CNS-intrinsic APCs.

    CAS  PubMed  Google Scholar 

  50. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    CAS  PubMed  Google Scholar 

  51. Anandasabapathy, N. et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med. 208, 1695–1705 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ifergan, I. et al. The blood–brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785–799 (2008).

    PubMed  Google Scholar 

  53. Croxford, A. L., Spath, S. & Becher, B. GM-CSF in neuroinflammation: licensing myeloid cells for tissue damage. Trends Immunol. 36, 651–662 (2015).

    CAS  PubMed  Google Scholar 

  54. Ji, Q., Castelli, L. & Goverman, J. M. MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8+ T cells. Nat. Immunol. 14, 254–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jordan, F. L. & Thomas, W. E. Brain macrophages: questions of origin and interrelationship. Brain Res. 472, 165–178 (1988).

    CAS  PubMed  Google Scholar 

  57. Flach, A.-C. et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc. Natl Acad. Sci. USA 113, 3323–3328 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 314, 537–539 (1985).

    CAS  PubMed  Google Scholar 

  59. Molnarfi, N. et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J. Exp. Med. 210, 2921–2937 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kowarik, M. C. et al. Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology 76, 1214–1221 (2011).

    CAS  PubMed  Google Scholar 

  61. Pierson, E. R., Stromnes, I. M. & Goverman, J. M. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J. Immunol. 192, 929–939 (2014).

    CAS  PubMed  Google Scholar 

  62. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    PubMed  Google Scholar 

  63. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    PubMed  Google Scholar 

  64. Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    CAS  PubMed  Google Scholar 

  65. Mitsdoerffer, M. & Peters, A. Tertiary lymphoid organs in central nervous system autoimmunity. Front. Immunol. 7, 451 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Verma, S., Kumar, M., Gurjav, U., Lum, S. & Nerurkar, V. R. Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397, 130–138 (2010).

    CAS  PubMed  Google Scholar 

  67. McMinn, P. C. The molecular basis of virulence of the encephalitogenic flaviviruses. J. Gen. Virol. 78, 2711–2722 (1997).

    CAS  PubMed  Google Scholar 

  68. Alexaki, A. & Wigdahl, B. HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathog. 4, e1000215 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Chapagain, M. L. & Nerurkar, V. R. Human polyomavirus JC (JCV) infection of human B lymphocytes: a possible mechanism for JCV transmigration across the blood–brain barrier. J. Infect. Dis. 202, 184–191 (2010).

    CAS  PubMed  Google Scholar 

  70. Salinas, S., Schiavo, G. & Kremer, E. J. A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nat. Rev. Microbiol. 8, 645–655 (2010).

    CAS  PubMed  Google Scholar 

  71. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rothhammer, V. et al. α4-integrins control viral meningoencephalitis through differential recruitment of T helper cell subsets. Acta Neuropathol. Commun. 2, 27 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Marten, N. W., Stohlman, S. A., Zhou, J. & Bergmann, C. C. Kinetics of virus-specific CD8+-T-cell expansion and trafficking following central nervous system infection. J. Virol. 77, 2775–2778 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Irani, D. N. & Griffin, D. E. Regulation of lymphocyte homing into the brain during viral encephalitis at various stages of infection. J. Immunol. 156, 3850–3857 (1996).

    CAS  PubMed  Google Scholar 

  75. Soilu- Hänninen, M., Röyttä, M., Salmi, A. A. & Salonen, R. Semliki Forest virus infection leads to increased expression of adhesion molecules on splenic T-cells and on brain vascular endothelium. J. Neurovirol. 3, 350–360 (1997).

    Google Scholar 

  76. Curis, C. et al. Human T-lymphotropic virus type 1-induced overexpression of activated leukocyte cell adhesion molecule (ALCAM) facilitates trafficking of infected lymphocytes through the blood–brain barrier. J. Virol. 90, 7303–7312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cayrol, R. et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 9, 137–145 (2008).

    CAS  PubMed  Google Scholar 

  78. Kawakami, N. & Flügel, A. Knocking at the brain's door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin. Immunopathol. 32, 275–287 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Korn, T., Mitsdoerffer, M. & Kuchroo, V. K. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis. Results Probl. Cell Differ. 51, 43–74 (2010).

    CAS  PubMed  Google Scholar 

  80. McCandless, E. E., Zhang, B., Diamond, M. S. & Klein, R. S. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc. Natl Acad. Sci. USA 105, 11270–11275 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cruz-Orengo, L. et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208, 327–339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Glass, W. G. et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J. Exp. Med. 202, 1087–1098 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Glass, W. G. et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 203, 35–40 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tran, E. H., Kuziel, W. A. & Owens, T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1α or its CCR5 receptor. Eur. J. Immunol. 30, 1410–1415 (2000).

    CAS  PubMed  Google Scholar 

  85. Zhang, B., Chan, Y. K., Lu, B., Diamond, M. S. & Klein, R. S. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J. Immunol. 180, 2641–2649 (2008).

    CAS  PubMed  Google Scholar 

  86. Dufour, J. H. et al. IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168, 3195–3204 (2002).

    CAS  PubMed  Google Scholar 

  87. Müller, M. et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 179, 2774–2786 (2007).

    PubMed  Google Scholar 

  88. Lord, G. M. et al. T-Bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 106, 3432–3439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nguyen, K. B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    CAS  PubMed  Google Scholar 

  90. Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon γproduction from CD4+ versus CD8+ T cells. J. Exp. Med. 189, 1355–1360 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hou, W., Kang, H. S. & Kim, B. S. Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection. J. Exp. Med. 206, 313–328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Berer, K. & Krishnamoorthy, G. Microbial view of central nervous system autoimmunity. FEBS Lett. 588, 4207–4213 (2014).

    CAS  PubMed  Google Scholar 

  93. Ochoa- Repáraz, J. & Kasper, L. H. Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Lett. 588, 4214–4222 (2014).

    Google Scholar 

  94. Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011). This paper demonstrates that the commensal microbiota can induce CNS autoimmunity in mice that have a biased autoreactive T cell repertoire and can also trigger antigen-specific B cell responses from the endogenous repertoire, which suggests that the priming of autoreactive T cells in spontaneous models of EAE might occur in gut-associated lymphoid tissue.

    CAS  PubMed  Google Scholar 

  96. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    CAS  PubMed  Google Scholar 

  97. Wang, S. et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43, 289–303 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 30, 447–454 (2009).

    CAS  PubMed  Google Scholar 

  99. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Quan, N., Whiteside, M. & Herkenham, M. Time course and localization patterns of interleukin-1β messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83, 281–293 (1998).

    CAS  PubMed  Google Scholar 

  103. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells. Immunity 44, 875–888 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kadowaki, A. et al. Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3. Nat. Commun. 7, 11639 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

    CAS  PubMed  Google Scholar 

  107. Hickey, W. F., Hsu, B. L. & Kimura, H. T-Lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260 (1991).

    CAS  PubMed  Google Scholar 

  108. Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med. 192, 871–880 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). This paper was the first to show that IL-23 drives a pathogenic subset of CD4+ T H cells that produce IL-17, which represented the discovery of T H 17 cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V. & Segal, B. M. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jäger, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    PubMed  Google Scholar 

  112. Rothhammer, V. et al. Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. J. Exp. Med. 208, 2465–2476 (2011). This paper shows that autoantigen-specific T H 1 cells and T H 17 cells differ in their integrin expression profiles and are thus differentially recruited to the CNS, which suggests that distinct lesion localization in CNS autoimmunity might be a determinant of distinct integrin expression patterns in T H cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Stromnes, I. M., Cerretti, L. M., Liggitt, D., Harris, R. A. & Goverman, J. M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schneider-Hohendorf, T. et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J. Exp. Med. 211, 1833–1846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Larochelle, C. et al. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135, 2906–2924 (2012).

    PubMed  Google Scholar 

  116. Du, F. et al. Inflammatory Th17 cells express integrin αvβ3 for pathogenic function. Cell Rep. 16, 1339–1351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kara, E. E. et al. CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nat. Commun. 6, 8644 (2015).

    CAS  PubMed  Google Scholar 

  118. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kurschus, F. C. et al. Genetic proof for the transient nature of the Th17 phenotype. Eur. J. Immunol. 40, 3336–3346 (2010).

    CAS  PubMed  Google Scholar 

  120. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    CAS  PubMed  Google Scholar 

  121. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. McQualter, J. L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Heinemann, C. et al. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nat. Commun. 5, 3770 (2014). This paper shows that T H 17 cells can sense IL-12 and IL-27, and can thereby be reprogrammed to express BLIMP1, which induces the expression of IL-10 and confers a regulatory cell-like phenotype to T H 17 cells. This indicates that the intrinsic reprogramming of effector T cells does not only occur in T H 1 cells but also occurs in T H 17 cells.

    CAS  PubMed  Google Scholar 

  124. Grifka-Walk, H. M., Giles, D. A. & Segal, B. M. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23. Eur. J. Immunol. 45, 2780–2786 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sheng, W. et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res. 24, 1387–1402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Herndler-Brandstetter, D. & Flavell, R. A. Producing GM-CSF: a unique T helper subset? Cell Res. 24, 1379–1380 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  128. Awasthi, A. et al. Cutting edge: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    CAS  PubMed  Google Scholar 

  129. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  131. Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    CAS  PubMed  Google Scholar 

  132. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Teh, P. P., Vasanthakumar, A. & Kallies, A. Development and function of effector regulatory T cells. Prog. Mol. Biol. Transl Sci. 136, 155–174 (2015).

    CAS  PubMed  Google Scholar 

  134. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    CAS  PubMed  Google Scholar 

  136. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 13, 1010–1019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA 103, 8137–8142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kebir, H. et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    CAS  PubMed  Google Scholar 

  140. Wang, Y. et al. The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 40, 355–366 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Krausgruber, T. et al. T-Bet is a key modulator of IL-23-driven pathogenic CD4+ T cell responses in the intestine. Nat. Commun. 7, 11627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, H. et al. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat. Immunol. 15, 393–401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, S.-Q., Jiang, S., Li, C., Zhang, B. & Li, Q.-J. miR-17-92 cluster targets phosphatase and tensin homology and ikaros family zinc finger 4 to promote TH17-mediated inflammation. J. Biol. Chem. 289, 12446–12456 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ichiyama, K. et al. The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44, 1284–1298 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lainé, A. et al. Foxo1 is a T cell-intrinsic inhibitor of the RORγt–Th17 program. J. Immunol. 195, 1791–1803 (2015).

    PubMed  Google Scholar 

  146. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014).

    CAS  PubMed  Google Scholar 

  148. Jankovic, D., Kugler, D. G. & Sher, A. IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal Immunol. 3, 239–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Anderson, C. F., Oukka, M., Kuchroo, V. K. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jankovic, D. et al. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 211, 1807–1819 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Darrah, P. A. et al. IL-10 production differentially influences the magnitude, quality, and protective capacity of Th1 responses depending on the vaccine platform. J. Exp. Med. 207, 1421–1433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gabrysová, L. et al. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells. J. Exp. Med. 206, 1755–1767 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. Häringer, B., Lozza, L., Steckel, B. & Geginat, J. Identification and characterization of IL-10/IFN-γ-producing effector-like T cells with regulatory function in human blood. J. Exp. Med. 206, 1009–1017 (2009).

    PubMed  PubMed Central  Google Scholar 

  155. Gagliani, N. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 19, 739–746 (2013).

    CAS  PubMed  Google Scholar 

  156. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011).

    CAS  PubMed  Google Scholar 

  157. Montes de Oca, M. et al. Blimp-1-dependent IL-10 production by Tr1 cells regulates TNF-mediated tissue pathology. PLoS Pathog. 12, e1005398 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Lin, M.-H. et al. B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells. Diabetologia 56, 136–146 (2013).

    CAS  PubMed  Google Scholar 

  159. Lin, M.-H. et al. T cell-specific BLIMP-1 deficiency exacerbates experimental autoimmune encephalomyelitis in nonobese diabetic mice by increasing Th1 and Th17 cells. Clin. Immunol. 151, 101–113 (2014).

    CAS  PubMed  Google Scholar 

  160. Vasanthakumar, A. & Kallies, A. IL-27 paves different roads to Tr1. Eur. J. Immunol. 43, 882–885 (2013).

    CAS  PubMed  Google Scholar 

  161. Jain, R. et al. Interleukin-23-induced transcription factor Blimp-1 promotes pathogenicity of T helper 17 cells. Immunity 44, 131–142 (2016).

    CAS  PubMed  Google Scholar 

  162. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    CAS  PubMed  Google Scholar 

  163. Meininger, I. et al. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells. Nat. Commun. 7, 11292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Brüstle, A. et al. The NF-κB regulator MALT1 determines the encephalitogenic potential of Th17 cells. J. Clin. Invest. 122, 4698–4709 (2012).

    PubMed  PubMed Central  Google Scholar 

  165. Bornancin, F. et al. Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J. Immunol. 194, 3723–3734 (2015).

    CAS  PubMed  Google Scholar 

  166. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Herz, J., Johnson, K. R. & McGavern, D. B. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J. Exp. Med. 212, 1153–1169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kägi, D., Ledermann, B., Bürki, K., Zinkernagel, R. M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14, 207–232 (1996).

    PubMed  Google Scholar 

  169. Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    CAS  PubMed  Google Scholar 

  170. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Huseby, E. S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Saxena, A. et al. Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J. Immunol. 181, 1617–1621 (2008).

    CAS  PubMed  Google Scholar 

  173. Huber, M. et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J. Clin. Invest. 123, 247–260 (2013).

    CAS  PubMed  Google Scholar 

  174. Intlekofer, A. M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Carbone, F. R., Mackay, L. K., Heath, W. R. & Gebhardt, T. Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. Curr. Opin. Immunol. 25, 329–333 (2013).

    CAS  PubMed  Google Scholar 

  177. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

    CAS  PubMed  Google Scholar 

  180. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    CAS  PubMed  Google Scholar 

  182. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013). This paper shows that downregulation of the transcriptional regulator KLF2 by cytokines (namely, TGF β and IL-33) is essential for the loss of S1PR1 expression in CD8+ T cells in non-lymphoid tissues, which then prevents their egress and the development of T RM cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Masson, F. et al. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J. Immunol. 179, 845–853 (2007).

    CAS  PubMed  Google Scholar 

  184. Shimamura, K. & Takeichi, M. Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development 116, 1011–1019 (1992).

    CAS  PubMed  Google Scholar 

  185. Mackay, L. K. et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).

    CAS  PubMed  Google Scholar 

  186. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS  PubMed  Google Scholar 

  187. Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

    CAS  PubMed  Google Scholar 

  188. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    PubMed  PubMed Central  Google Scholar 

  189. Mackay, L. K. et al. T-Box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    CAS  PubMed  Google Scholar 

  190. Graham, J. B., Da Costa, A. & Lund, J. M. Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J. Immunol. 192, 683–690 (2014).

    CAS  PubMed  Google Scholar 

  191. Prasad, S., Hu, S., Sheng, W. S., Singh, A. & Lokensgard, J. R. Tregs modulate lymphocyte proliferation, activation, and resident-memory T-cell accumulation within the brain during MCMV infection. PLoS ONE 10, e0145457 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  PubMed  Google Scholar 

  195. Lowther, D. E. et al. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol. 126, 501–515 (2013). This paper shows that the elimination of FOXP3+ T reg cells converts low-level CNS autoimmunity into a fulminant CNS autoimmune disease, which suggests that FOXP3+ T reg cells are required to re-establish immune homeostasis once tolerance is broken.

    CAS  PubMed  Google Scholar 

  196. Kohm, A. P., Carpentier, P. A., Anger, H. A. & Miller, S. D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    CAS  PubMed  Google Scholar 

  197. McGeachy, M. J., Stephens, L. A. & Anderton, S. M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    CAS  PubMed  Google Scholar 

  198. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  200. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. O'Connor, R. A., Malpass, K. H. & Anderton, S. M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J. Immunol. 179, 958–966 (2007).

    CAS  PubMed  Google Scholar 

  202. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    CAS  PubMed  Google Scholar 

  205. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Chaudhry, A. et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34, 566–578 (2011). This paper shows that FOXP3+ T reg cells need to be activated by IL-10 for full suppressive activity. This IL-10 is not produced by the T reg cells themselves but is derived from conventional T cells that are present at the site of inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    CAS  PubMed  Google Scholar 

  208. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Matsumoto, M. et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41, 1040–1051 (2014).

    CAS  PubMed  Google Scholar 

  211. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Hauser, S. L. et al. B-Cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    CAS  PubMed  Google Scholar 

  213. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Baruch, K. et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Baruch, K. et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc. Natl Acad. Sci. USA 110, 2264–2269 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Griffin, W. S. et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl Acad. Sci. USA 86, 7611–7615 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. vom Berg, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med. 18, 1812–1819 (2012).

    CAS  PubMed  Google Scholar 

  222. Monsonego, A. et al. Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging 9, 339–349 (1988).

    CAS  PubMed  Google Scholar 

  224. Togo, T. et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    CAS  PubMed  Google Scholar 

  225. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer's disease pathology. Nat. Commun. 6, 7967 (2015).

    CAS  PubMed  Google Scholar 

  226. Bryson, K. J. & Lynch, M. A. Linking T cells to Alzheimer's disease: from neurodegeneration to neurorepair. Curr. Opin. Pharmacol. 26, 67–73 (2016).

    CAS  PubMed  Google Scholar 

  227. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    CAS  PubMed  Google Scholar 

  228. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    CAS  PubMed  Google Scholar 

  229. Hock, C. et al. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat. Med. 8, 1270–1275 (2002).

    CAS  PubMed  Google Scholar 

  230. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  231. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  232. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146 (1996).

    CAS  PubMed  Google Scholar 

  233. Traugott, U., Reinherz, E. L. & Raine, C. S. Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219, 308–310 (1983).

    CAS  PubMed  Google Scholar 

  234. Traugott, U. & Lebon, P. Interferon-γ and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. J. Neurol. Sci. 84, 257–264 (1988).

    CAS  PubMed  Google Scholar 

  235. Chu, C. Q., Wittmer, S. & Dalton, D. K. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123–128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  237. Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    CAS  PubMed  Google Scholar 

  238. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  PubMed  Google Scholar 

  239. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  241. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    CAS  PubMed  Google Scholar 

  243. Treiner, E. & Liblau, R. S. Mucosal-associated invariant T cells in multiple sclerosis: the jury is still out. Front. Immunol. 6, 503 (2015).

    PubMed  PubMed Central  Google Scholar 

  244. Corbett, A. J. et al. T-Cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).

    CAS  PubMed  Google Scholar 

  245. Ussher, J. E. et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 44, 195–203 (2014).

    CAS  PubMed  Google Scholar 

  246. Willing, A. et al. CD8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur. J. Immunol. 44, 3119–3128 (2014).

    CAS  PubMed  Google Scholar 

  247. Held, K. et al. αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell-related features. Neurol. Neuroimmunol. Neuroinflamm. 2, e107 (2015).

    PubMed  PubMed Central  Google Scholar 

  248. Wilson, R. P. et al. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. J. Exp. Med. 212, 855–864 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Croxford, J. L., Miyake, S., Huang, Y.-Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    CAS  PubMed  Google Scholar 

  250. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    CAS  PubMed  Google Scholar 

  252. Quintana, E. et al. DNGR-1+ dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia 63, 2231–2248 (2015).

    PubMed  Google Scholar 

  253. Ling, E. A., Kaur, C. & Lu, J. Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc. Res. Tech. 41, 43–56 (1998).

    CAS  PubMed  Google Scholar 

  254. Kivisäkk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003).

    PubMed  PubMed Central  Google Scholar 

  255. Kivisäkk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Muschaweckh for critically reading the manuscript. Work in the authors' laboratories is supported by the Deutsche Forschungsgemeinschaft (grants TRR128, SFB1054-B07, TK and SyNergy to T.K.), by the European Research Council (EXODUS Consolidator Grant 647215 to T.K.), and the Sylvia and Charles Viertel Foundation (a Senior Medical Research Fellowship to A.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Korn or Axel Kallies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Blood–brain barrier

(BBB). The BBB limits lymphocyte entry into the brain and is characterized by the presence of endothelial cells that show reduced transcytosis, and by the absence or reduced expression of cellular adhesion molecules during homeostasis and inflammation. These properties seem to be shaped by endothelial cell crosstalk with astrocytes and pericytes.

Quantitative trait loci

Depending on the algorithm used, single-nucleotide polymorphisms in a 1-Mb DNA region around the transcription start site of a given gene are tested for their effect on the amount of RNA transcribed from that gene; those regions that are associated with effects on transcription are referred to as quantitative trait loci.

Glymphatic system

A hypothetical clearance system of the central nervous system (CNS) interstitial space that was first described by Nedergaard and colleagues in 2013. During sleep, the interstitial space of the CNS parenchyma (particularly in the cortex) increases substantially, which induces the convective exchange of cerebrospinal fluid (CSF) with the interstitial fluid. This results in the clearance of metabolites from the CNS interstitial space into the CSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korn, T., Kallies, A. T cell responses in the central nervous system. Nat Rev Immunol 17, 179–194 (2017). https://doi.org/10.1038/nri.2016.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing