Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures

Key Points

  • Modulation of cellular immune and inflammatory processes — including antiviral defence mechanisms — relies crucially on cytokines, chemokines and their cell surface receptors.

  • Alternative versions of mammalian cytokine and chemokine receptors, widely known as decoy receptors, provide a key extension of immunoregulatory pathways in health and disease.

  • Decoy receptors typically mimic the binding principles that underlie the assembly of canonical complexes between protein effectors and cognate receptors.

  • Structural analyses and comparisons of canonical and decoy receptor complexes have revealed the diverse structural and mechanistic principles that underlie the immunomodulatory potency of decoy receptors.

  • Mechanisms of immune system subversion by viruses often feature virus-encoded decoy receptors that target host cytokines and chemokines.

  • Viral decoy receptors display structural and molecular mimicry of host receptors, but often use other mechanisms in addition to these 'in-built' features, including the use of novel protein scaffolds with functions that are unrelated to host proteins.

  • Structural and mechanistic annotations of mammalian and viral immunomodulatory decoy receptors may enable us to harness the therapeutic potential of such proteins and their complexes.

Abstract

Immune responses are regulated by effector cytokines and chemokines that signal through cell surface receptors. Mammalian decoy receptors — which are typically soluble or inactive versions of cell surface receptors or soluble protein modules termed binding proteins — modulate and antagonize signalling by canonical effector–receptor complexes. Viruses have developed a diverse array of molecular decoys to evade host immune responses; these include viral homologues of host cytokines, chemokines and chemokine receptors; variants of host receptors with new functions; and novel decoy receptors that do not have host counterparts. Over the past decade, the number of known mammalian and viral decoy receptors has increased considerably, yet a comprehensive curation of the corresponding structure–mechanism relationships has not been carried out. In this Review, we provide a comprehensive resource on this topic with a view to better understanding the roles and evolutionary relationships of mammalian and viral decoy receptors, and the opportunities for leveraging their therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Soluble mammalian decoy receptors derived from signalling receptors.
Figure 2: Soluble mammalian decoy receptor homologues and binding proteins.
Figure 3: Membrane-bound decoy receptors.
Figure 4: Virus-encoded cytokine and chemokine receptor homologues.
Figure 5: Herpesvirus-encoded and poxvirus-encoded binding proteins that do not have host counterparts.

Similar content being viewed by others

References

  1. Schulz, O., Hammerschmidt, S. I., Moschovakis, G. L. & Forster, R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu. Rev. Immunol. 34, 203–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz, D. M., Bonelli, M., Gadina, M. & O'Shea, J. J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 12, 25–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heaney, M. L. & Golde, D. W. Soluble cytokine receptors. Blood 87, 847–857 (1996).

    CAS  PubMed  Google Scholar 

  5. Colotta, F. et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261, 472–475 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Afonina, I. S., Muller, C., Martin, S. J. & Beyaert, R. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity 42, 991–1004 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Colotta, F., Dower, S. K., Sims, J. E. & Mantovani, A. The type II 'decoy' receptor: a novel regulatory pathway for interleukin 1. Immunol. Today 15, 562–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22, 328–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. McMahan, C. J. et al. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J. 10, 2821–2832 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arend, W. P. et al. Binding of IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids. J. Immunol. 153, 4766–4774 (1994).

    CAS  PubMed  Google Scholar 

  11. Greenfeder, S. A. et al. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orlando, S. et al. Role of metalloproteases in the release of the IL-1 type II decoy receptor. J. Biol. Chem. 272, 31764–31769 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, C. et al. Cloning and characterization of an alternatively processed human type II interleukin-1 receptor mRNA. J. Biol. Chem. 271, 20965–20972 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, Y., Humphry, M., Maguire, J. J., Bennett, M. R. & Clarke, M. C. Intracellular interleukin-1 receptor 2 binding prevents cleavage and activity of interleukin-1α, controlling necrosis-induced sterile inflammation. Immunity 38, 285–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, D. E. et al. The soluble form of IL-1 receptor accessory protein enhances the ability of soluble type II IL-1 receptor to inhibit IL-1 action. Immunity 18, 87–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, C., Bazan, J. F. & Garcia, K. C. Structure of the activating IL-1 receptor signaling complex. Nat. Struct. Mol. Biol. 19, 455–457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, D. et al. Structural insights into the assembly and activation of IL-1β with its receptors. Nat. Immunol. 11, 905–911 (2010). References 17 and 18 are key structural studies that provide mechanistic insights into the assembly of the prototypic IL-1 signalling and decoy complexes.

    Article  CAS  PubMed  Google Scholar 

  19. Weber, S. & Saftig, P. Ectodomain shedding and ADAMs in development. Development 139, 3693–3709 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Scheller, J., Chalaris, A., Garbers, C. & Rose-John, S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 32, 380–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, C. P., Andrews, J. I. & Liu, K. Z. Intronic polyadenylation signal sequences and alternate splicing generate human soluble Flt1 variants and regulate the abundance of soluble Flt1 in the placenta. FASEB J. 21, 3885–3895 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Vorlova, S. et al. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol. Cell 43, 927–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kakkar, R. & Lee, R. T. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 7, 827–840 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Mullberg, J. et al. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J. Immunol. 155, 5198–5205 (1995).

    CAS  PubMed  Google Scholar 

  27. Muller-Newen, G. et al. Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J. Immunol. 161, 6347–6355 (1998).

    CAS  PubMed  Google Scholar 

  28. Peters, M. et al. The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. J. Exp. Med. 183, 1399–1406 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Narazaki, M. et al. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82, 1120–1126 (1993).

    CAS  PubMed  Google Scholar 

  31. Jostock, T. et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Boulanger, M. J., Chow, D. C., Brevnova, E. E. & Garcia, K. C. Hexameric structure and assembly of the interleukin-6/IL-6 α-receptor/gp130 complex. Science 300, 2101–2104 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ring, A. M. et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat. Immunol. 13, 1187–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mortier, E., Bernard, J., Plet, A. & Jacques, Y. Natural, proteolytic release of a soluble form of human IL-15 receptor α-chain that behaves as a specific, high affinity IL-15 antagonist. J. Immunol. 173, 1681–1688 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Bergamaschi, C. et al. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood 120, e1–e8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stonier, S. W. & Schluns, K. S. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol. Lett. 127, 85–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Lundstrom, W. et al. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc. Natl Acad. Sci. USA 110, E1761–E1770 (2013).

    Article  PubMed  Google Scholar 

  40. Hong, C. et al. Activated T cells secrete an alternatively spliced form of common γ-chain that inhibits cytokine signaling and exacerbates inflammation. Immunity 40, 910–923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, X., Lupardus, P., Laporte, S. L. & Garcia, K. C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Verstraete, K. et al. Structural basis of the proinflammatory signaling complex mediated by TSLP. Nat. Struct. Mol. Biol. 21, 375–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. McElroy, C. A. et al. Structural reorganization of the interleukin-7 signaling complex. Proc. Natl Acad. Sci. USA 109, 2503–2508 (2012).

    Article  PubMed  Google Scholar 

  44. Adamopoulos, I. E. & Mellins, E. D. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 189–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Johnstone, R. W., Frew, A. J. & Smyth, M. J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8, 782–798 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Luan, X. et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 189, 245–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Nelson, C. A., Warren, J. T., Wang, M. W., Teitelbaum, S. L. & Fremont, D. H. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure 20, 1971–1982 (2012). This study reveals the structural determinants of the decoy characteristics of OPG, which binds its ligand, RANKL, with a 500-fold higher affinity than does RANK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ta, H. M. et al. Structure-based development of a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proc. Natl Acad. Sci. USA 107, 20281–20286 (2010).

    Article  PubMed  Google Scholar 

  49. Liu, C. et al. Structural and functional insights of RANKL–RANK interaction and signaling. J. Immunol. 184, 6910–6919 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Zhan, C. et al. Decoy strategies: the structure of TL1A:DcR3 complex. Structure 19, 162–171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, W. et al. Mechanistic basis for functional promiscuity in the TNF and TNF receptor superfamilies: structure of the LIGHT:DcR3 assembly. Structure 22, 1252–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, W. et al. Crystal structure of the complex of human FasL and its decoy receptor DcR3. Structure 24, 2016–2023 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Dumoutier, L., Lejeune, D., Colau, D. & Renauld, J. C. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J. Immunol. 166, 7090–7095 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Kotenko, S. V. et al. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J. Immunol. 166, 7096–7103 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, W. et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc. Natl Acad. Sci. USA 98, 9511–9516 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. de Moura, P. R. et al. Crystal structure of a soluble decoy receptor IL-22BP bound to interleukin-22. FEBS Lett. 583, 1072–1077 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Bleicher, L. et al. Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS Lett. 582, 2985–2992 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Jones, B. C., Logsdon, N. J. & Walter, M. R. Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure 16, 1333–1344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E. & Lopez-Rios, J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121, 737–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Lopez-Rios, J., Esteve, P., Ruiz, J. M. & Bovolenta, P. The netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Dev. 3, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cruciat, C. M. & Niehrs, C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5, a015081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bafico, A. et al. Interaction of Frizzled related protein (FRP) with Wnt ligands and the Frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 274, 16180–16187 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Dann, C. E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez, J. et al. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat. Neurosci. 8, 1301–1309 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Novick, D. et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10, 127–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Bufler, P. et al. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc. Natl Acad. Sci. USA 99, 13723–13728 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kumar, S. et al. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-γ production. Cytokine 18, 61–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tsutsumi, N. et al. The structural basis for receptor recognition of human interleukin-18. Nat. Commun. 5, 5340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jenkins, M., Keir, M. & McCune, J. M. A membrane-bound Fas decoy receptor expressed by human thymocytes. J. Biol. Chem. 275, 7988–7993 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Pan, G. et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815–818 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Pan, G., Ni, J., Yu, G., Wei, Y. F. & Dixit, V. M. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett. 424, 41–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Caput, D. et al. Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor α chain. J. Biol. Chem. 271, 16921–16926 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Donaldson, D. D. et al. The murine IL-13 receptor α2: molecular cloning, characterization, and comparison with murine IL-13 receptor α1. J. Immunol. 161, 2317–2324 (1998).

    CAS  PubMed  Google Scholar 

  74. Chen, W. et al. IL-13Rα2 membrane and soluble isoforms differ in humans and mice. J. Immunol. 183, 7870–7876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hershey, G. K. IL-13 receptors and signaling pathways: an evolving web. J. Allergy Clin. Immunol. 111, 677–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lupardus, P. J., Birnbaum, M. E. & Garcia, K. C. Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Rα2. Structure 18, 332–342 (2010). This structural study demonstrates how the membrane-bound decoy receptor IL-13Rα2 uses an overlapping yet extended IL-13-binding interface when compared with the signalling receptor IL-1Rα1, such that IL-13Rα2 can bind IL-13 with subpicomolar affinity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. LaPorte, S. L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meyer, R. D., Mohammadi, M. & Rahimi, N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J. Biol. Chem. 281, 867–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Nold-Petry, C. A. et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat. Immunol. 16, 354–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4, 920–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Qin, J., Qian, Y., Yao, J., Grace, C. & Li, X. SIGIRR inhibits interleukin-1 receptor- and Toll-like receptor 4-mediated signaling through different mechanisms. J. Biol. Chem. 280, 25233–25241 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Garlanda, C., Anders, H. J. & Mantovani, A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. Trends Immunol. 30, 439–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Thomassen, E., Renshaw, B. R. & Sims, J. E. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine 11, 389–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Burns, J. M. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203, 2201–2213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nibbs, R. J. & Graham, G. J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13, 815–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Bachelerie, F. et al. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66, 1–79 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R. & Luker, G. D. Imaging ligand-dependent activation of CXCR7. Neoplasia 11, 1022–1035 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Borroni, E. M. et al. β-Arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6. Sci. Signal. 6, ra30 (2013).

    Article  PubMed  Google Scholar 

  90. D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat. Immunol. 1, 387–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Iannello, A. et al. Viral strategies for evading antiviral cellular immune responses of the host. J. Leukoc. Biol. 79, 16–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Speck, S. H. & Ganem, D. Viral latency and its regulation: lessons from the γ-herpesviruses. Cell Host Microbe 8, 100–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Odom, M. R., Hendrickson, R. C. & Lefkowitz, E. J. Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. Virus Res. 144, 233–249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3, 36–50 (2003). This seminal Review focuses on the evasion strategies used by large DNA viruses that involve virus-encoded homologues of cytokines, chemokines and their receptors, which modulate the immune system of the host.

    Article  CAS  PubMed  Google Scholar 

  96. McFadden, G., Lalani, A., Everett, H., Nash, P. & Xu, X. Virus-encoded receptors for cytokines and chemokines. Semin. Cell Dev. Biol. 9, 359–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Smith, C. A. et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248, 1019–1023 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Smith, C. A. et al. T2 open reading frame from the Shope fibroma virus encodes a soluble form of the TNF receptor. Biochem. Biophys. Res. Commun. 176, 335–342 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Alcami, A. & Smith, G. L. A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Spriggs, M. K. et al. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71, 145–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Upton, C., Mossman, K. & McFadden, G. Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science 258, 1369–1372 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Alcami, A. & Smith, G. L. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J. Virol. 69, 4633–4639 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu, F. Q., Smith, C. A. & Pickup, D. J. Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. Virology 204, 343–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Smith, C. A. et al. Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LTα. Virology 223, 132–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Loparev, V. N. et al. A third distinct tumor necrosis factor receptor of orthopoxviruses. Proc. Natl Acad. Sci. USA 95, 3786–3791 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Saraiva, M. & Alcami, A. CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J. Virol. 75, 226–233 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Alejo, A. et al. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl Acad. Sci. USA 103, 5995–6000 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Graham, S. C. et al. Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J. Mol. Biol. 372, 660–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Naismith, J. H., Devine, T. Q., Kohno, T. & Sprang, S. R. Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure 4, 1251–1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor–human TNFβ complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Pontejo, S. M., Alejo, A. & Alcami, A. Comparative biochemical and functional analysis of viral and human secreted tumor necrosis factor (TNF) decoy receptors. J. Biol. Chem. 290, 15973–15984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Panus, J. F. et al. Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue. Proc. Natl Acad. Sci. USA 99, 8348–8353 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Saraiva, M., Smith, P., Fallon, P. G. & Alcami, A. Inhibition of type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J. Exp. Med. 196, 829–839 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kennedy, M. K., Willis, C. R. & Armitage, R. J. Deciphering CD30 ligand biology and its role in humoral immunity. Immunology 118, 143–152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xiang, Y. & Moss, B. IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins. Proc. Natl Acad. Sci. USA 96, 11537–11542 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Smith, V. P., Bryant, N. A. & Alcami, A. Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J. Gen. Virol. 81, 1223–1230 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Born, T. L. et al. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J. Immunol. 164, 3246–3254 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Krumm, B., Meng, X., Wang, Z., Xiang, Y. & Deng, J. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein. PLoS Pathog. 8, e1002876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Krumm, B., Meng, X., Li, Y., Xiang, Y. & Deng, J. Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein. Proc. Natl Acad. Sci. USA 105, 20711–20715 (2008). This study reveals the structural basis of human IL-18 scavenging by a virus-encoded homologue of human IL-18BP.

    Article  PubMed  Google Scholar 

  120. Maussang, D., Bongers, G., Lira, S. A. & Smit, M. J. in Chemokine Receptors as Drug Targets (eds Smit, M. J., Lira, S. A. & Leurs, R.) 177–205 (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).

    Google Scholar 

  121. Kledal, T. N., Rosenkilde, M. M. & Schwartz, T. W. Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett. 441, 209–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Burg, J. S. et al. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347, 1113–1117 (2015). This pioneering study reports the first crystal structure of a viral GPCR, US28, and provides important insights into its constitutive activity in the absence of ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Rovati, G. E., Capra, V. & Neubig, R. R. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Nomiyama, H. & Yoshie, O. Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors. J. Leukoc. Biol. 97, 39–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mossman, K., Upton, C., Buller, R. M. & McFadden, G. Species specificity of ectromelia virus and vaccinia virus interferon-γ binding proteins. Virology 208, 762–769 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Sakala, I. G. et al. Poxvirus-encoded gamma interferon binding protein dampens the host immune response to infection. J. Virol. 81, 3346–3353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nuara, A. A., Bai, H., Chen, N., Buller, R. M. & Walter, M. R. The unique C termini of orthopoxvirus gamma interferon binding proteins are essential for ligand binding. J. Virol. 80, 10675–10682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Symons, J. A., Alcami, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Alcami, A., Symons, J. A. & Smith, G. L. The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J. Virol. 74, 11230–11239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Montanuy, I., Alejo, A. & Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. FASEB J. 25, 1960–1971 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nuara, A. A. et al. Structure and mechanism of IFN-γ antagonism by an orthopoxvirus IFN-γ-binding protein. Proc. Natl Acad. Sci. USA 105, 1861–1866 (2008). This study reports the structure of an orthopoxvirus-encoded IFNγBP protein that has gained novel functionality by adopting a C-terminal tetramerization motif similar to that of the yeast transcription factor TFIIA.

    Article  PubMed  Google Scholar 

  135. Lee, C. A. Structural basis of type-I interferon sequestration by a poxvirus decoy receptor. Washington PhD thesis, Washington Univ. (2011).

  136. Thiel, D. J. et al. Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex. Structure 8, 927–936 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Thomas, C. et al. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146, 621–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brunetti, C. R. et al. A secreted high-affinity inhibitor of human TNF from tanapox virus. Proc. Natl Acad. Sci. USA 100, 4831–4836 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Rahman, M. M. et al. Interaction of human TNF and β2-microglobulin with tanapox virus-encoded TNF inhibitor, TPV-2L. Virology 386, 462–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, Z., West, A. P. & Bjorkman, P. J. Crystal structure of TNFα complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009). This structural study dissects the mechanism by which TNF is inhibited by the poxvirus 2L protein, which lacks homology to TNFR family members but rather shares a low level of sequence similarity with MHC class I heavy chain molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Strockbine, L. D. et al. The Epstein–Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J. Virol. 72, 4015–4021 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Stanley, E. R. & Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, a021857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tarbouriech, N., Ruggiero, F., de Turenne-Tessier, M., Ooka, T. & Burmeister, W. P. Structure of the Epstein–Barr virus oncogene BARF1. J. Mol. Biol. 359, 667–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Elegheert, J. et al. Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat. Struct. Mol. Biol. 19, 938–947 (2012). The structures presented in this key study provide a novel mechanistic explanation for the inactivation of human CSF1 by the Epstein–Barr virus decoy receptor BARF1, which is structurally related to human CD80 and does not show any homology or resemblance to cognate CSF1R.

    Article  CAS  PubMed  Google Scholar 

  145. Felix, J. et al. Structure and assembly mechanism of the signaling complex mediated by human CSF-1. Structure 23, 1621–1631 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Lucas, A. & McFadden, G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J. Immunol. 173, 4765–4774 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, D., Bresnahan, W. & Shenk, T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc. Natl Acad. Sci. USA 101, 16642–16647 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Lubman, O. Y. et al. Rodent herpesvirus Peru encodes a secreted chemokine decoy receptor. J. Virol. 88, 538–546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lubman, O. Y. & Fremont, D. H. Parallel evolution of chemokine binding by structurally related herpesvirus decoy receptors. Structure 24, 57–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Parry, C. M. et al. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J. Exp. Med. 191, 573–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. van Berkel, V. et al. Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J. Virol. 74, 6741–6747 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Webb, L. M., Smith, V. P. & Alcami, A. The gammaherpesvirus chemokine binding protein can inhibit the interaction of chemokines with glycosaminoglycans. FASEB J. 18, 571–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Alexander, J. M. et al. Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111, 343–356 (2002). This hallmark study describes the crystal structure of the M3 protein, which is encoded by murine γ-herpesvirus 68, and its complex with the chemokine CCL2, and shows that M3 uses structural mimicry and conformational flexibility to scavenge different chemokines with high affinity.

    Article  CAS  PubMed  Google Scholar 

  154. Alexander-Brett, J. M. & Fremont, D. H. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor. J. Exp. Med. 204, 3157–3172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nelson, C. A., Epperson, M. L., Singh, S., Elliott, J. I. & Fremont, D. H. Structural conservation and functional diversity of the poxvirus immune evasion (PIE) domain superfamily. Viruses 7, 4878–4898 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Bahar, M. W. et al. Structure and function of A41, a vaccinia virus chemokine binding protein. PLoS Pathog. 4, e5 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Arnold, P. L. & Fremont, D. H. Structural determinants of chemokine binding by an ectromelia virus-encoded decoy receptor. J. Virol. 80, 7439–7449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Carfi, A., Smith, C. A., Smolak, P. J., McGrew, J. & Wiley, D. C. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc. Natl Acad. Sci. USA 96, 12379–12383 (1999). This important paper reports the first crystal structure of a poxvirus-encoded CKBP that lacks sequence similarity to any other known protein.

    Article  CAS  PubMed  Google Scholar 

  159. Zhang, L. et al. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β. Proc. Natl Acad. Sci. USA 103, 13985–13990 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Counago, R. M. et al. Structures of orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity. Structure 23, 1199–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Xue, X. et al. Structural basis of chemokine sequestration by CrmD, a poxvirus-encoded tumor necrosis factor receptor. PLoS Pathog. 7, e1002162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McCoy, W. H. IV, Wang, X., Yokoyama, W. M., Hansen, T. H. & Fremont, D. H. Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biol. 10, e1001432 (2012). This study describes the structural principles of how the cowpox virus-encoded CPXV203 protein disrupts the surface expression of MHC class I.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Deane, D. et al. Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J. Virol. 74, 1313–1320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Felix, J. et al. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF. Nat. Commun. 7, 13228 (2016). This reference provides a structural framework for the novel binding duality of the orf virus decoy receptor GIF, which sequesters the two unrelated cytokines — GM-CSF and IL-2 — to achieve immunomodulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fernandez-Botran, R., Crespo, F. A. & Sun, X. Soluble cytokine receptors in biological therapy. Expert Opin. Biol. Ther. 2, 585–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Czajkowsky, D. M., Hu, J., Shao, Z. & Pleass, R. J. Fc-fusion proteins: new developments and future perspectives. EMBO Mol. Med. 4, 1015–1028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Levin, D., Golding, B., Strome, S. E. & Sauna, Z. E. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 33, 27–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat. Med. 9, 47–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Braun, H., Afonina, I., Mueller, C. & Beyaert, R. 2: generation and characterization of IL-33 cytokine traps as anti-cytokine blockers. Cytokine 70, 28 (2014).

    Article  Google Scholar 

  171. Yin, H. et al. Adenovirus-mediated overexpression of soluble ST2 provides a protective effect on lipopolysaccharide-induced acute lung injury in mice. Clin. Exp. Immunol. 164, 248–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ding, Y., Qin, L., Kotenko, S. V., Pestka, S. & Bromberg, J. S. A single amino acid determines the immunostimulatory activity of interleukin 10. J. Exp. Med. 191, 213–224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fallon, P. G. & Alcami, A. Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol. 27, 470–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. DeBruyne, L. A., Li, K., Bishop, D. K. & Bromberg, J. S. Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Ther. 7, 575–582 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Liu, L. et al. The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury. J. Clin. Invest. 105, 1613–1621 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dabbagh, K. et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J. Immunol. 165, 3418–3422 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Pyo, R. et al. Inhibition of intimal hyperplasia in transgenic mice conditionally expressing the chemokine-binding protein M3. Am. J. Pathol. 164, 2289–2297 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Viejo-Borbolla, A. et al. Attenuation of TNF-driven murine ileitis by intestinal expression of the viral immunomodulator CrmD. Mucosal Immunol. 3, 633–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lucas, A. et al. The serpin saga; development of a new class of virus derived anti-inflammatory protein immunotherapeutics. Adv. Exp. Med. Biol. 666, 132–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Zheng, D. et al. Virus-derived anti-inflammatory proteins: potential therapeutics for cancer. Trends Mol. Med. 18, 304–310 (2012). References 173 and 180 are comprehensive review articles that describe the use of recombinantly produced immunomodulatory proteins derived from pathogens such as bacteria and viruses as a novel class of immunotherapeutic.

    Article  CAS  PubMed  Google Scholar 

  181. Lucas, A. et al. Transplant vasculopathy: viral anti-inflammatory serpin regulation of atherogenesis. J. Heart Lung Transplant. 19, 1029–1038 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, L. et al. Comparative analysis of plaque growth after arterial stent implant with anti-inflammatory chemokine and serine protease inhibitors treatment. J. Clin. Exp. Cardiol. 4, 274 (2013).

    Google Scholar 

  183. Dai, E. et al. Inhibition of chemokine–glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection. PLoS ONE 5, e10510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 484, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Moraga, I. et al. Instructive roles for cytokine-receptor binding parameters in determining signaling and functional potency. Sci. Signal. 8, ra114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Spangler, J. B., Moraga, I., Mendoza, J. L. & Garcia, K. C. Insights into cytokine–receptor interactions from cytokine engineering. Annu. Rev. Immunol. 33, 139–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Skrlec, K., Strukelj, B. & Berlec, A. Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol. 33, 408–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Desmet, J. et al. Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Nat. Commun. 5, 5237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xu, Y. et al. Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J. Biol. Chem. 285, 21214–21218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. McElroy, C. A., Dohm, J. A. & Walsh, S. T. Structural and biophysical studies of the human IL-7/IL-7Rα complex. Structure 17, 54–65 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Leppänen, V.-M. et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl Acad. Sci. USA 107, 2425–2430 (2010).

    Article  PubMed  Google Scholar 

  193. Liu, X. et al. Structural insights into the interaction of IL-33 with its receptors. Proc. Natl Acad. Sci. USA 110, 14918–14923 (2013).

    Article  PubMed  Google Scholar 

  194. Cheng, J. et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263, 1759–1762 (1994).

    Article  CAS  PubMed  Google Scholar 

  195. Wiesmann, C. et al. Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695–704 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Yoon, S. I., Jones, B. C., Logsdon, N. J. & Walter, M. R. Same structure, different function crystal structure of the Epstein–Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure 13, 551–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Jones, B. C. et al. Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc. Natl Acad. Sci. USA 99, 9404–9409 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V. & Pestka, S. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA 97, 1695–1700 (2000).

    Article  CAS  PubMed  Google Scholar 

  199. Wise, L., McCaughan, C., Tan, C. K., Mercer, A. A. & Fleming, S. B. Orf virus interleukin-10 inhibits cytokine synthesis in activated human THP-1 monocytes, but only partially impairs their proliferation. J. Gen. Virol. 88, 1677–1682 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Fleming, S. B. et al. Sequence and functional analysis of a homolog of interleukin-10 encoded by the parapoxvirus orf virus. Virus Genes 21, 85–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Chow, D., He, X., Snow, A. L., Rose-John, S. & Garcia, K. C. Structure of an extracellular gp130 cytokine receptor signaling complex. Science 291, 2150–2155 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Liu, H. et al. Structural basis of semaphorin–plexin recognition and viral mimicry from Sema7A and A39R complexes with plexinC1. Cell 142, 749–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pieren, M. et al. Crystal structure of the Orf virus NZ2 variant of vascular endothelial growth factor-E: implications for receptor specificity. J. Biol. Chem. 281, 19578–19587 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Qin, L. et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347, 1117–1122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lalani, A. S. et al. The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J. Virol. 71, 4356–4363 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bryant, N. A., Davis-Poynter, N., Vanderplasschen, A. & Alcami, A. Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J. 22, 833–846 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Research Foundation Flanders, Belgium, which provided a research fellowship to J.F. and research grants to S.N.S. (G0597.10, G0643.07N and G0B7912N). S.N.S. is supported by a programme grant from the Flanders Institute for Biotechnology. The authors regret not being able to discuss and cite many valuable contributions in the field covered by this article because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Felix or Savvas N. Savvides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Virus-encoded cytokine and chemokine receptor homologues. (DOC 8240 kb)

Supplementary information S2 (figure)

Herpesvirus-encoded and poxvirus-encoded binding proteins that do not have host counterparts. (DOC 1386 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, J., Savvides, S. Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 17, 112–129 (2017). https://doi.org/10.1038/nri.2016.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing