Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunoregulation by members of the TGFβ superfamily

Key Points

  • Activins and bone morphogenetic proteins (BMPs), which are part of transforming growth factor-β (TGFβ) superfamily, regulate a diverse range of immune responses through their effects on both immune and non-immune cell populations.

  • TGFβ, activins and BMPs have distinct receptors and use both different and some shared signalling mediators. Similarly to TGFβ, activins signal through their receptors to activate SMAD2 and SMAD3; by contrast, signalling by BMPs activates SMAD1, SMAD5 and SMAD8.

  • Activin A is the best characterized of the activins, and innate and adaptive immune cell populations both produce and respond to this cytokine.

  • Activin A can synergize with TGFβ to promote FOXP3+ regulatory T (Treg) cell generation from naive CD4+ T cells in vitro, but activin A alone fails to induce Treg cells.

  • Activin A can have pro-inflammatory or anti-inflammatory effects depending on the target cell type, the activation status of the targeted immune cells and the tissue microenvironment.

  • Similarly, BMPs have been found to both positively and negatively regulate innate and adaptive immune responses; their effects are dependent on the target cells and the type of BMP.

  • BMPs have been shown to have both tumour-promoting and tumour-suppressing effects in cancer.

Abstract

The transforming growth factor-β (TGFβ) superfamily is encoded by 33 genes and includes TGFβ, bone morphogenetic proteins (BMPs) and activins. Although TGFβ is well recognized as a crucial regulator of immune responses, the immunoregulatory functions of other TGFβ family members are less clear. However, recent evidence suggests that BMPs and activins have important roles in regulating immune responses. In this Review, we briefly outline the signalling pathways of the TGFβ superfamily and discuss new insights into the immunoregulatory functions of BMPs and activins in the context of infection, inflammation and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signal transduction by the TGFβ superfamily.
Figure 2: TGFβ regulates immune cells in the thymus and periphery.
Figure 3: Immunoregulation by BMPs and activins in the thymus and peripheral tissues.
Figure 4: Effects of TGFβ, activins and BMPs on immune responses in cancer.

Similar content being viewed by others

References

  1. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    CAS  PubMed  Google Scholar 

  2. Wu, M. Y. & Hill, C. S. TGF-β superfamily signaling in embryonic development and homeostasis. Dev. Cell 16, 329–343 (2009).

    CAS  PubMed  Google Scholar 

  3. Chen, W. & Wahl, S. M. TGF-β: receptors, signaling pathways and autoimmunity. Curr. Dir. Autoimmun. 5, 62–91 (2002).

    CAS  PubMed  Google Scholar 

  4. Letterio, J. J. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16, 137–161 (1998).

    CAS  PubMed  Google Scholar 

  5. Li, M. O. & Flavell, R. A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    CAS  PubMed  Google Scholar 

  7. Akhurst, R. J. & Padgett, R. W. Matters of context guide future research in TGFβ superfamily signaling. Sci. Signal. 8, re10 (2015).

    PubMed  Google Scholar 

  8. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mu, Y., Gudey, S. K. & Landstrom, M. Non-Smad signaling pathways. Cell Tissue Res. 347, 11–20 (2012).

    CAS  PubMed  Google Scholar 

  10. Chen, W. & Konkel, J. E. TGF-β and 'adaptive' Foxp3+ regulatory T cells. J. Mol. Cell Biol. 2, 30–36 (2010).

    CAS  PubMed  Google Scholar 

  11. Chen, W. & Konkel, J. E. Development of thymic Foxp3+ regulatory T cells: TGF-β matters. Eur. J. Immunol. 45, 958–965 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, W. & Wahl, S. M. TGF-β: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev. 14, 85–89 (2003).

    CAS  PubMed  Google Scholar 

  13. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nat. Rev. Immunol. 10, 554–567 (2010).

    CAS  PubMed  Google Scholar 

  14. Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nat. Rev. Immunol. 2, 46–53 (2002).

    CAS  PubMed  Google Scholar 

  15. Rubtsov, Y. P. & Rudensky, A. Y. TGFβ signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 7, 443–453 (2007).

    CAS  PubMed  Google Scholar 

  16. Tu, E., Chia, P. Z. & Chen, W. TGFβ in T cell biology and tumor immunity: angel or devil? Cytokine Growth Factor Rev. 25, 423–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Datto, M. B. et al. Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol. Cell. Biol. 19, 2495–2504 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Konkel, J. E. et al. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12, 312–319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    CAS  PubMed  Google Scholar 

  20. Li, M. O., Sanjabi, S. & Flavell, R. A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    CAS  PubMed  Google Scholar 

  21. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    CAS  PubMed  Google Scholar 

  22. Marie, J. C., Liggitt, D. & Rudensky, A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    CAS  PubMed  Google Scholar 

  23. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Takimoto, T. et al. Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185, 842–855 (2010).

    CAS  PubMed  Google Scholar 

  25. Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huber, S. & Schramm, C. Role of activin A in the induction of Foxp3+ and Foxp3 CD4+ regulatory T cells. Crit. Rev. Immunol. 31, 53–60 (2011).

    CAS  PubMed  Google Scholar 

  27. Phillips, D. J., de Kretser, D. M. & Hedger, M. P. Activin and related proteins in inflammation: not just interested bystanders. Cytokine Growth Factor Rev. 20, 153–164 (2009).

    CAS  PubMed  Google Scholar 

  28. Seeger, P., Musso, T. & Sozzani, S. The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Rev. 26, 647–657 (2015).

    CAS  PubMed  Google Scholar 

  29. Martínez, V. G. et al. The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol. Cell Biol. 89, 610–618 (2011).

    PubMed  Google Scholar 

  30. Martínez, V. G. et al. The BMP pathway participates in human naive CD4+ T cell activation and homeostasis. PLoS ONE 10, e0131453 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Takabayashi, H. et al. Anti-inflammatory activity of bone morphogenetic protein signaling pathways in stomachs of mice. Gastroenterology 147, 396–406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyazono, K. et al. A role of the latent TGF-β1-binding protein in the assembly and secretion of TGF-β1. EMBO J. 10, 1091–1101 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, R. et al. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol. Cell 23, 1129–1139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Hedger, M. P. & de Kretser, D. M. The activins and their binding protein, follistatin — diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev. 24, 285–295 (2013).

    CAS  PubMed  Google Scholar 

  36. Wang, X., Harris, R. E., Bayston, L. J. & Ashe, H. L. Type IV collagens regulate BMP signalling in Drosophila. Nature 455, 72–77 (2008).

    CAS  PubMed  Google Scholar 

  37. Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony and antagony in the family. Trends Cell Biol. 25, 249–264 (2015).

    CAS  PubMed  Google Scholar 

  38. Cheifetz, S. et al. Distinct transforming growth factor-β (TGF-β) receptor subsets as determinants of cellular responsiveness to three TGF-β isoforms. J. Biol. Chem. 265, 20533–20538 (1990).

    CAS  PubMed  Google Scholar 

  39. Corradini, E., Babitt, J. L. & Lin, H. Y. The RGM/DRAGON family of BMP co-receptors. Cytokine Growth Factor Rev. 20, 389–398 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Itoh, S. & ten Dijke, P. Negative regulation of TGF-β receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19, 176–184 (2007).

    CAS  PubMed  Google Scholar 

  41. Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    CAS  PubMed  Google Scholar 

  42. Daly, A. C., Randall, R. A. & Hill, C. S. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol. 28, 6889–6902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L. & Attisano, L. Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell 2, 109–120 (1998).

    CAS  PubMed  Google Scholar 

  44. Tsukamoto, S. et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci. Rep. 4, 7596 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. He, W. et al. Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125, 929–941 (2006).

    CAS  PubMed  Google Scholar 

  46. Sorrentino, A. et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199–1207 (2008).

    CAS  PubMed  Google Scholar 

  47. Papadimitriou, E., Kardassis, D., Moustakas, A. & Stournaras, C. TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2. Cell Physiol. Biochem. 28, 229–238 (2011).

    CAS  PubMed  Google Scholar 

  48. Lee, M. K. et al. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Aleman-Muench, G. R. & Soldevila, G. When versatility matters: activins/inhibins as key regulators of immunity. Immunol. Cell Biol. 90, 137–148 (2012).

    CAS  PubMed  Google Scholar 

  50. Mather, J. P., Roberts, P. E. & Krummen, L. A. Follistatin modulates activin activity in a cell- and tissue-specific manner. Endocrinology 132, 2732–2734 (1993).

    CAS  PubMed  Google Scholar 

  51. Jones, K. L. et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia. Proc. Natl Acad. Sci. USA 104, 16239–16244 (2007).

    CAS  PubMed  Google Scholar 

  52. Woeckel, V. J., van der Eerden, B. C., Schreuders-Koedam, M., Eijken, M. & Van Leeuwen, J. P. 1α,25-dihydroxyvitamin D3 stimulates activin A production to fine-tune osteoblast-induced mineralization. J. Cell. Physiol. 228, 2167–2174 (2013).

    CAS  PubMed  Google Scholar 

  53. Yu, J. et al. Induced expression of the new cytokine, activin A, in human monocytes: inhibition by glucocorticoids and retinoic acid. Immunology 88, 368–374 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Eramaa, M., Hurme, M., Stenman, U. H. & Ritvos, O. Activin A/erythroid differentiation factor is induced during human monocyte activation. J. Exp. Med. 176, 1449–1452 (1992).

    CAS  PubMed  Google Scholar 

  55. Abe, M. et al. Potent induction of activin A secretion from monocytes and bone marrow stromal fibroblasts by cognate interaction with activated T cells. J. Leukoc. Biol. 72, 347–352 (2002).

    CAS  PubMed  Google Scholar 

  56. Winnall, W. R., Muir, J. A. & Hedger, M. P. Differential responses of epithelial Sertoli cells of the rat testis to Toll-like receptor 2 and 4 ligands: implications for studies of testicular inflammation using bacterial lipopolysaccharides. Innate Immun. 17, 123–136 (2011).

    CAS  PubMed  Google Scholar 

  57. Wilson, K. M., Smith, A. I. & Phillips, D. J. Stimulatory effects of lipopolysaccharide on endothelial cell activin and follistatin. Mol. Cell. Endocrinol. 253, 30–35 (2006).

    CAS  PubMed  Google Scholar 

  58. Lee, J. K. et al. Serum activin-A as a predictive and prognostic marker in critically ill patients with sepsis. Respirology 21, 891–897 (2016).

    PubMed  Google Scholar 

  59. Ogawa, K. & Funaba, M. Activin in humoral immune responses. Vitam. Horm. 85, 235–253 (2011).

    CAS  PubMed  Google Scholar 

  60. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Scutera, S. et al. Production and function of activin A in human dendritic cells. Eur. Cytokine Netw. 19, 60–68 (2008).

    CAS  PubMed  Google Scholar 

  62. Seeger, P. et al. Activin A as a mediator of NK-dendritic cell functional interactions. J. Immunol. 192, 1241–1248 (2014).

    CAS  PubMed  Google Scholar 

  63. Robson, N. C. et al. Activin-A attenuates several human natural killer cell functions. Blood 113, 3218–3225 (2009). This study, together with reference 62, shows that DCs produce activin A, which in turn regulates NK cell function during DC–NK cell interaction in vitro.

    CAS  PubMed  Google Scholar 

  64. Robson, N. C. et al. Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood 111, 2733–2743 (2008).

    CAS  PubMed  Google Scholar 

  65. Salogni, L. et al. Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 113, 5848–5856 (2009).

    CAS  PubMed  Google Scholar 

  66. Cho, S. H. et al. Regulation of activin A expression in mast cells and asthma: its effect on the proliferation of human airway smooth muscle cells. J. Immunol. 170, 4045–4052 (2003).

    CAS  PubMed  Google Scholar 

  67. Funaba, M., Ikeda, T., Ogawa, K. & Abe, M. Calcium-regulated expression of activin A in RBL-2H3 mast cells. Cell Signal. 15, 605–613 (2003).

    CAS  PubMed  Google Scholar 

  68. Funaba, M., Ikeda, T., Ogawa, K., Murakami, M. & Abe, M. Role of activin A in murine mast cells: modulation of cell growth, differentiation, and migration. J. Leukoc. Biol. 73, 793–801 (2003).

    CAS  PubMed  Google Scholar 

  69. Karagiannidis, C. et al. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-β-mediated airway remodeling in asthma. J. Allergy Clin. Immunol. 117, 111–118 (2006).

    CAS  PubMed  Google Scholar 

  70. Semitekolou, M. et al. Activin-A induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease. J. Exp. Med. 206, 1769–1785 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hardy, C. L. et al. Interleukin-13 regulates secretion of the tumor growth factor-β superfamily cytokine activin A in allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 42, 667–675 (2010).

    CAS  PubMed  Google Scholar 

  72. Zipori, D. & Barda-Saad, M. Role of activin A in negative regulation of normal and tumor B lymphocytes. J. Leukoc. Biol. 69, 867–873 (2001).

    CAS  PubMed  Google Scholar 

  73. Yamashita, N. et al. Effects of activin A on IgE synthesis and cytokine production by human peripheral mononuclear cells. Clin. Exp. Immunol. 94, 214–219 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ogawa, K., Funaba, M. & Tsujimoto, M. A dual role of activin A in regulating immunoglobulin production of B cells. J. Leukoc. Biol. 83, 1451–1458 (2008).

    CAS  PubMed  Google Scholar 

  75. Lee, H. J. & Kim, P. H. Further characterization of activin A-induced IgA response in murine B lymphocytes. Immune Netw. 9, 133–137 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Licona, P., Chimal-Monroy, J. & Soldevila, G. Inhibins are the major activin ligands expressed during early thymocyte development. Dev. Dyn. 235, 1124–1132 (2006).

    CAS  PubMed  Google Scholar 

  77. Rosendahl, A., Speletas, M., Leandersson, K., Ivars, F. & Sideras, P. Transforming growth factor-β– and Activin–Smad signaling pathways are activated at distinct maturation stages of the thymopoeisis. Int. Immunol. 15, 1401–1414 (2003). This study shows that most immature DN thymocytes and mature SP thymocytes express phosphorylated SMAD2 in the nuclei in vivo , and activins and TGFβ may have non-redundant roles in the development of early (DN) and late (SP) thymocytes, respectively.

    CAS  PubMed  Google Scholar 

  78. Licona-Limon, P. et al. Activins and inhibins: novel regulators of thymocyte development. Biochem. Biophys. Res. Commun. 381, 229–235 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ogawa, K., Funaba, M., Chen, Y. & Tsujimoto, M. Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. J. Immunol. 177, 6787–6794 (2006).

    CAS  PubMed  Google Scholar 

  80. Jones, C. P., Gregory, L. G., Causton, B., Campbell, G. A. & Lloyd, C. M. Activin A and TGF-β promote TH9 cell-mediated pulmonary allergic pathology. J. Allergy Clin. Immunol. 129, 1000–1010 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Huber, S. et al. Activin a promotes the TGF-β-induced conversion of CD4+CD25 T cells into Foxp3+ induced regulatory T cells. J. Immunol. 182, 4633–4640 (2009). This study shows that activin A can act as a promoter off the TGFβ-dependent conversion of CD4+CD25 T cells into peripherally induced T reg cells in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  82. Pluchino, S. et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS ONE 4, e5959 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Yasmin, N. et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J. Exp. Med. 210, 2597–2610 (2013). This study shows that BMP7 induces Langerhans cell differentiation and proliferation through ALK3 in the absence of TGFβ–ALK5 mediated signalling. The study also shows that TGFβ1-induced in vitro differentiation of Langerhans cells is also through ALK3, not ALK5. The data suggest that BMP-mediated signalling has a dominant role in Langerhans cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Strobl, H. et al. TGF-β1 dependent generation of LAG+ dendritic cells from CD34+ progenitors in serum-free medium. Adv. Exp. Med. Biol. 417, 161–165 (1997).

    CAS  PubMed  Google Scholar 

  85. Borkowski, T. A., Letterio, J. J., Farr, A. G. & Udey, M. C. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417–2422 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, A. G., Lu, S. L., Han, G., Hoot, K. E. & Wang, X. J. Role of TGFβ in skin inflammation and carcinogenesis. Mol. Carcinog. 45, 389–396 (2006).

    CAS  PubMed  Google Scholar 

  87. Hong, J. H. et al. Effect of bone morphogenetic protein-6 on macrophages. Immunology 128, e442–e450 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Kwon, S. J., Lee, G. T., Lee, J. H., Kim, W. J. & Kim, I. Y. Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 128, e758–e765 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Lee, G. T. et al. Induction of interleukin-6 expression by bone morphogenetic protein-6 in macrophages requires both SMAD and p38 signaling pathways. J. Biol. Chem. 285, 39401–39408 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, J. H. et al. BMP-6 in renal cell carcinoma promotes tumor proliferation through IL-10-dependent M2 polarization of tumor-associated macrophages. Cancer Res. 73, 3604–3614 (2013). This study shows that BMP6 signalling induces Il10 transcription through SMAD5–SMAD4 complex and STAT3 in tumour-associated macrophages.

    CAS  PubMed  Google Scholar 

  91. Owens, P. et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene 34, 2437–2449 (2015).

    CAS  PubMed  Google Scholar 

  92. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hidalgo, L. et al. Expression of BMPRIA on human thymic NK cell precursors: role of BMP signaling in intrathymic NK cell development. Blood 119, 1861–1871 (2012).

    CAS  PubMed  Google Scholar 

  94. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    CAS  PubMed  Google Scholar 

  95. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Heemskerk, M. H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Robson, N. C. et al. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling. Cancer Res. 74, 5019–5031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cortez, V. S. et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Denney, L. et al. Pulmonary epithelial cell-derived cytokine TGF-β1 is a critical cofactor for enhanced innate lymphoid cell function. Immunity 43, 945–958 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Huse, K. et al. Bone morphogenetic proteins inhibit CD40L/IL-21-induced Ig production in human B cells: differential effects of BMP-6 and BMP-7. Eur. J. Immunol. 41, 3135–3145 (2011).

    CAS  PubMed  Google Scholar 

  101. Jurberg, A. D., Vasconcelos-Fontes, L. & Cotta-de-Almeida, V. A. Tale from TGF-β superfamily for thymus ontogeny and function. Front. Immunol. 6, 442 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Bleul, C. C. & Boehm, T. BMP signaling is required for normal thymus development. J. Immunol. 175, 5213–5221 (2005).

    CAS  PubMed  Google Scholar 

  103. Gordon, J., Patel, S. R., Mishina, Y. & Manley, N. R. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev. Biol. 339, 141–154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hager-Theodorides, A. L. et al. Bone morphogenetic protein 2/4 signaling regulates early thymocyte differentiation. J. Immunol. 169, 5496–5504 (2002).

    CAS  PubMed  Google Scholar 

  105. Tsai, P. T., Lee, R. A. & Wu, H. BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 102, 3947–3953 (2003).

    CAS  PubMed  Google Scholar 

  106. Yoshioka, Y., Ono, M., Osaki, M., Konishi, I. & Sakaguchi, S. Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation. Eur. J. Immunol. 42, 749–759 (2012). This study shows that BMP signalling has multiple effects on CD4+ T cell differentiation in vitro.

    CAS  PubMed  Google Scholar 

  107. Sivertsen, E. A. et al. Inhibitory effects and target genes of bone morphogenetic protein 6 in Jurkat TAg cells. Eur. J. Immunol. 37, 2937–2948 (2007).

    CAS  PubMed  Google Scholar 

  108. Varas, A. et al. Interplay between BMP4 and IL-7 in human intrathymic precursor cells. Cell Cycle 8, 4119–4126 (2009).

    CAS  PubMed  Google Scholar 

  109. Antsiferova, M. & Werner, S. The bright and the dark sides of activin in wound healing and cancer. J. Cell Sci. 125, 3929–3937 (2012).

    CAS  PubMed  Google Scholar 

  110. Antsiferova, M. et al. Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response. Nat. Commun. 2, 576 (2011).

    PubMed  PubMed Central  Google Scholar 

  111. Davis, H., Raja, E., Miyazono, K., Tsubakihara, Y. & Moustakas, A. Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev. 27, 81–92 (2015).

    PubMed  Google Scholar 

  112. Wakefield, L. M. & Hill, C. S. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat. Rev. Cancer 13, 328–341 (2013).

    CAS  PubMed  Google Scholar 

  113. Martínez, V. G. et al. Autocrine activation of canonical BMP signaling regulates PD-L1 and PD-L2 expression in human dendritic cells. Eur. J. Immunol. 44, 1031–1038 (2014).

    PubMed  Google Scholar 

  114. Lu, L. et al. Synergistic effect of TGF-β superfamily members on the induction of Foxp3+ Treg. Eur. J. Immunol. 40, 142–152 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hardy, C. L., Rolland, J. M. & O'Hehir, R. E. The immunoregulatory and fibrotic roles of activin A in allergic asthma. Clin. Exp. Allergy 45, 1510–1522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Soler Palacios, B. et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. J. Pathol. 235, 515–526 (2015).

    CAS  PubMed  Google Scholar 

  117. Ota, F. et al. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 48, 2442–2449 (2003).

    CAS  PubMed  Google Scholar 

  118. Dong, F. & He, X. Activin A: a potential therapeutic target for characterizing and stopping joint pain early in rheumatoid arthritis patients. Inflammation 37, 170–176 (2014).

    PubMed  Google Scholar 

  119. Yu, E. W., Dolter, K. E., Shao, L. E. & Yu, J. Suppression of IL-6 biological activities by activin A and implications for inflammatory arthropathies. Clin. Exp. Immunol. 112, 126–132 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Torricell, M. et al. High levels of maternal serum IL-17 and activin A in pregnant women affected by systemic lupus erythematosus. Am. J. Reprod. Immunol. 66, 84–89 (2011).

    Google Scholar 

  121. Barna, B. P. et al. A novel 1,25-dihydroxyvitamin D–activin A pathway in human alveolar macrophages is dysfunctional in patients with pulmonary alveolar proteinosis (PAP). Autoimmunity 42, 56–62 (2009).

    CAS  PubMed  Google Scholar 

  122. Ahn, M. et al. Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res. 1453, 77–86 (2012).

    CAS  PubMed  Google Scholar 

  123. Ihn, H. J. et al. Identification of Acvr2a as a Th17 cell-specific gene induced during Th17 differentiation. Biosci. Biotechnol. Biochem. 75, 2138–2141 (2011).

    CAS  PubMed  Google Scholar 

  124. Voumvourakis, K. I., Antonelou, R., Kitsos, D. K., Stamboulis, E. & Tsiodras, S. TGF-β/BMPs: crucial crossroad in neural autoimmune disorders. Neurochem. Int. 59, 542–550 (2011).

    CAS  PubMed  Google Scholar 

  125. Reier, P. J. & Houle, J. D. The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv. Neurol. 47, 87–138 (1988).

    CAS  PubMed  Google Scholar 

  126. Bramlage, C. P. et al. Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R58 (2006).

    PubMed  PubMed Central  Google Scholar 

  127. Daans, M., Lories, R. J. & Luyten, F. P. Dynamic activation of bone morphogenetic protein signaling in collagen-induced arthritis supports their role in joint homeostasis and disease. Arthritis Res. Ther. 10, R115 (2008).

    PubMed  PubMed Central  Google Scholar 

  128. Lories, R. J., Derese, I., Ceuppens, J. L. & Luyten, F. P. Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum. 48, 2807–2818 (2003).

    CAS  PubMed  Google Scholar 

  129. Marinova-Mutafchieva, L., Taylor, P., Funa, K., Maini, R. N. & Zvaifler, N. J. Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint. Arthritis Rheum. 43, 2046–2055 (2000).

    CAS  PubMed  Google Scholar 

  130. Tang, Y. et al. Gene expression profile reveals abnormalities of multiple signaling pathways in mesenchymal stem cell derived from patients with systemic lupus erythematosus. Clin. Dev. Immunol. 2012, 826182 (2012).

    PubMed  PubMed Central  Google Scholar 

  131. Dieelberg, C. et al. Follistatin does not influence the course of Escherichia coli K1 sepsis in a mouse model. Shock 38, 615–619 (2012).

    CAS  PubMed  Google Scholar 

  132. Wilms, H. et al. Regulation of activin A synthesis in microglial cells: pathophysiological implications for bacterial meningitis. J. Neurosci. Res. 88, 16–23 (2010).

    CAS  PubMed  Google Scholar 

  133. Michel, U. et al. Increased activin levels in cerebrospinal fluid of rabbits with bacterial meningitis are associated with activation of microglia. J. Neurochem. 86, 238–245 (2003).

    CAS  PubMed  Google Scholar 

  134. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Shanmugam, N. K., Chen, K. & Cherayil, B. J. Commensal bacteria-induced interleukin 1β (IL-1β) secreted by macrophages up-regulates hepcidin expression in hepatocytes by activating the bone morphogenetic protein signaling pathway. J. Biol. Chem. 290, 30637–30647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Letterio, J. J. et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 98, 2109–2119 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yaswen, L. et al. Autoimmune manifestations in the transforming growth factor-β1 knockout mouse. Blood 87, 1439–1445 (1996).

    CAS  PubMed  Google Scholar 

  138. Bobr, A. et al. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc. Natl Acad. Sci. USA 109, 10492–10497 (2012).

    CAS  PubMed  Google Scholar 

  139. Gutcher, I. et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34, 396–408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kaplan, D. H. et al. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204, 2545–2552 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hall, B. E. et al. Conditional overexpression of TGF-β1 disrupts mouse salivary gland development and function. Lab. Invest. 90, 543–555 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. De Paiva, C. S. et al. Disruption of TGF-β signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca. PLoS ONE 6, e29017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Du, W. et al. TGF-β signaling is required for the function of insulin-reactive T regulatory cells. J. Clin. Invest. 116, 1360–1370 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gate, D. et al. T-Cell TGF-β signaling abrogation restricts medulloblastoma progression. Proc. Natl Acad. Sci. USA 111, E3458–E3466 (2014).

    CAS  PubMed  Google Scholar 

  146. Ishigame, H., Mosaheb, M. M., Sanjabi, S. & Flavell, R. A. Truncated form of TGF-βRII, but not its absence, induces memory CD8+ T cell expansion and lymphoproliferative disorder in mice. J. Immunol. 190, 6340–6350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6, 600–607 (2005).

    CAS  PubMed  Google Scholar 

  148. Laouar, Y. et al. TGF-β signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 105, 10865–10870 (2008).

    CAS  PubMed  Google Scholar 

  149. Raes, G., Beschin, A., Ghassabeh, G. H. & De Baetselier, P. Alternatively activated macrophages in protozoan infections. Curr. Opin. Immunol. 19, 454–459 (2007).

    CAS  PubMed  Google Scholar 

  150. Robertson, A. K. et al. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, W. et al. Deletion of interleukin-6 in mice with the dominant negative form of transforming growth factor β receptor II improves colitis but exacerbates autoimmune cholangitis. Hepatology 52, 215–222 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Filippi, C. M. et al. Transforming growth factor-β suppresses the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes 57, 2684–2692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ishigame, H. et al. Excessive Th1 responses due to the absence of TGF-β signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis. Proc. Natl Acad. Sci. USA 110, 6961–6966 (2013).

    CAS  PubMed  Google Scholar 

  154. Ouyang, W., Beckett, O., Ma, Q. & Li, M. O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, N. & Bevan, M. J. TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat. Immunol. 13, 667–673 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cazac, B. B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).

    CAS  PubMed  Google Scholar 

  157. Lievens, D. et al. Abrogated transforming growth factor β receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur. Heart J. 34, 3717–3727 (2013).

    CAS  PubMed  Google Scholar 

  158. Ramalingam, R. et al. Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J. Immunol. 189, 3878–3893 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, B. G. et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441, 1015–1019 (2006).

    CAS  PubMed  Google Scholar 

  160. Nakatsukasa, H. et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4+ T cells. Nat. Immunol. 16, 1077–1084 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, A. et al. Cutting edge: Smad2 and Smad4 regulate TGF-β-mediated Il9 gene expression via EZH2 displacement. J. Immunol. 191, 4908–4912 (2013).

    CAS  PubMed  Google Scholar 

  162. Karlsson, G. et al. Smad4 is critical for self-renewal of hematopoietic stem cells. J. Exp. Med. 204, 467–474 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Singbrant, S. et al. Smad5 is dispensable for adult murine hematopoiesis. Blood 108, 3707–3712 (2006).

    CAS  PubMed  Google Scholar 

  164. Fantini, M. C. et al. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136, 1308–1316 (2009).

    CAS  PubMed  Google Scholar 

  165. Ka, S. M. et al. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J. Am. Soc. Nephrol. 18, 1777–1788 (2007).

    CAS  PubMed  Google Scholar 

  166. Nakao, A. et al. Blockade of transforming growth factor β/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med. 192, 151–158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kleiter, I. et al. Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133, 1067–1081 (2010).

    PubMed  PubMed Central  Google Scholar 

  168. Xia, Y. et al. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages. J. Immunol. 186, 1369–1376 (2011).

    CAS  PubMed  Google Scholar 

  169. Tsalavos, S. et al. Involvement of twisted gastrulation in T cell-independent plasma cell production. J. Immunol. 186, 6860–6870 (2011).

    CAS  PubMed  Google Scholar 

  170. Hager-Theodorides, A. L. et al. Direct BMP2/4 signaling through BMP receptor IA regulates fetal thymocyte progenitor homeostasis and differentiation to CD4+CD8+ double-positive cell. Cell Cycle 13, 324–333 (2014).

    CAS  PubMed  Google Scholar 

  171. Yamawaki, K. et al. Adult-specific systemic over-expression reveals novel in vivo effects of the soluble forms of ActRIIA, ActRIIB and BMPRII. PLoS ONE 8, e78076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Asano, Y. et al. Involvement of αvβ5 integrin-mediated activation of latent transforming growth factor β1 in autocrine transforming growth factor β signaling in systemic sclerosis fibroblasts. Arthritis Rheum. 52, 2897–2905 (2005).

    CAS  PubMed  Google Scholar 

  173. Minagawa, S. et al. Selective targeting of TGF-β activation to treat fibroinflammatory airway disease. Sci. Transl Med. 6, 241ra279 (2014).

    Google Scholar 

  174. Van Aarsen, L. A. et al. Antibody-mediated blockade of integrin αvβ6 inhibits tumor progression in vivo by a transforming growth factor-β-regulated mechanism. Cancer Res. 68, 561–570 (2008).

    PubMed  Google Scholar 

  175. Border, W. A. et al. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 360, 361–364 (1992).

    CAS  PubMed  Google Scholar 

  176. McMahon, G. A., Dignam, J. D. & Gentry, L. E. Structural characterization of the latent complex between transforming growth factor β1 and β1-latency-associated peptide. Biochem. J. 313, 343–351 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. O' Connor-McCourt, M. D. & Wakefield, L. M. Latent transforming growth factor-β in serum. A specific complex with α2-macroglobulin. J. Biol. Chem. 262, 14090–14099 (1987).

    Google Scholar 

  178. Hardee, M. E. et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 72, 4119–4129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Khaw, P. et al. A phase III study of subconjunctival human anti-transforming growth factor β2 monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology 114, 1822–1830 (2007).

    PubMed  Google Scholar 

  180. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhong, Z. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16, 1191–1205 (2010).

    CAS  PubMed  Google Scholar 

  182. George, J., Roulot, D., Koteliansky, V. E. & Bissell, D. M. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor β type II receptor: a potential new therapy for hepatic fibrosis. Proc. Natl Acad. Sci. USA 96, 12719–12724 (1999).

    CAS  PubMed  Google Scholar 

  183. Juarez, P. et al. Soluble betaglycan reduces renal damage progression in db/db mice. Am. J. Physiol. Renal Physiol. 292, F321–F329 (2007).

    CAS  PubMed  Google Scholar 

  184. Melisi, D. et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7, 829–840 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Petersen, M. et al. Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney Int. 73, 705–715 (2008).

    CAS  PubMed  Google Scholar 

  186. Herbertz, S. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-β signaling pathway. Drug Des. Devel. Ther. 9, 4479–4499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Leung, S. Y. et al. Effect of transforming growth factor-β receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J. Pharmacol. Exp. Ther. 319, 586–594 (2006).

    CAS  PubMed  Google Scholar 

  188. Chen, J. L. et al. Development of novel activin-targeted therapeutics. Mol. Ther. 23, 434–444 (2015).

    CAS  PubMed  Google Scholar 

  189. Nakamura, T. et al. Activin-binding protein from rat ovary is follistatin. Science 247, 836–838 (1990).

    CAS  PubMed  Google Scholar 

  190. DePaolo, L. V., Bald, L. N. & Fendly, B. M. Passive immunoneutralization with a monoclonal antibody reveals a role for endogenous activin-B in mediating FSH hypersecretion during estrus and following ovariectomy of hypophysectomized, pituitary-grafted rats. Endocrinology 130, 1741–1743 (1992).

    CAS  PubMed  Google Scholar 

  191. Hatsell, S. J. et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl Med. 7, 303ra137 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. O'Connell, K. E. et al. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J. 29, 1165–1175 (2015).

    CAS  PubMed  Google Scholar 

  193. Raje, N. & Vallet, S. Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss. Curr. Opin. Mol. Ther. 12, 586–597 (2010).

    CAS  PubMed  Google Scholar 

  194. Calpe, S. et al. Effective inhibition of bone morphogenetic protein function by highly specific llama-derived antibodies. Mol. Cancer Ther. 14, 2527–2540 (2015).

    CAS  PubMed  Google Scholar 

  195. Gordon, M. S. et al. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin. Cancer Res. 20, 5918–5926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Necchi, A. et al. PF-03446962, a fully-human monoclonal antibody against transforming growth-factor β (TGFβ) receptor ALK1, in pre-treated patients with urothelial cancer: an open label, single-group, phase 2 trial. Invest. New Drugs 32, 555–560 (2014).

    CAS  PubMed  Google Scholar 

  197. Sakai, H. et al. Augmented autocrine bone morphogenic protein (BMP) 7 signaling increases the metastatic potential of mouse breast cancer cells. Clin. Exp. Metastasis 29, 327–338 (2012).

    CAS  PubMed  Google Scholar 

  198. Andriopoulos, B. Jr et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41, 482–487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Castonguay, R. et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J. Biol. Chem. 286, 30034–30046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Hawinkels, L. J. et al. Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. Clin. Cancer Res. 22, 96–106 (2016).

    CAS  PubMed  Google Scholar 

  201. Steinbicker, A. U. et al. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 117, 4915–4923 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yamawaki, K. et al. The soluble form of BMPRIB is a novel therapeutic candidate for treating bone related disorders. Sci. Rep. 6, 18849 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Boergermann, J. H., Kopf, J., Yu, P. B. & Knaus, P. Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, 38 and Akt signalling in C2C12 cells. Int. J. Biochem. Cell Biol. 42, 1802–1807 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Sanvitale, C. E. et al. A new class of small molecule inhibitor of BMP signaling. PLoS ONE 8, e62721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Tsugawa, D. et al. Specific activin receptor-like kinase 3 inhibitors enhance liver regeneration. J. Pharmacol. Exp. Ther. 351, 549–558 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all of the members in the Mucosal Immunology Section, National Institute for Dental and Craniofacial Research, for their help preparing the tables and figures. We also thank Y. Wu and V. Chen for critically reading the manuscript. This research was supported by The Intramural Research Program of the US National Institutes of Health (W.J.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WanJun Chen or Peter ten Dijke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

SMAD transcription factors

A family of proteins that act as intracellular effectors of TGFβ superfamily members. This family was named for their similarity to the Drosophila gene product mothers against decapentaplegic (Mad) and the Caenorhabditis elegans SMA protein.

M2-like macrophage

Macrophages that develop in response to interleukin-4 (IL-4) or IL-13 and produce high levels of IL-10 and TGF, and low levels of IL-12. They are generally involved in type 2 immunity and tissue repair.

Remyelination

The process of propagating oligodendrocyte precursor cells to form oligodendrocytes to create new myelin sheaths on demyelinated axons in the central nervous system.

β-Selection process

A process during T cell development in the thymus to produce mature T cells with a diverse array of functional T cell receptors. It eliminates thymocytes with gross defects introduced into the T cell receptor by gene rearrangement.

Nuclear factor of activated T cells

(NFAT). A family of transcription factors in lymphocytes that is crucial for regulating early gene transcription in response to T cell receptor-mediated signals.

Langerhans cell

A group of dendritic cells that are mainly resident in the basal and suprabasal layers of the skin and mucosa, such as the mucosa of the mouth, foreskin and vagina, as well as in the epidermis and in the epithelia of the respiratory, digestive and urogenital tracts.

Cyclin-dependent kinases

(CDKs). A family of protein kinases that phosphorylate various proteins involved in cell cycle progression on serine and threonine residues. CDKs require the presence of cyclins to become active.

Innate lymphoid cells

(ILCs). A group of innate-like lymphocytes that do not express antigen receptors but produce effector cytokines and other immune mediators in response to stimulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., ten Dijke, P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol 16, 723–740 (2016). https://doi.org/10.1038/nri.2016.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.112

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer